VOCs and PM listing of Eucalyptus globulus combustion in residential wood stoves

Authors

  • Francisco Henríquez
  • Diógenes Hernández
  • Felipe Varas-Concha
  • Camila Gutierrez
  • Héctor Quinteros-Lama
  • Jorge O. Morales-Ferreiro

DOI:

https://doi.org/10.4067/s0718-221x2023000100412

Keywords:

Biomass combustion, boiler load, particulate matter, volatile organic compounds, volatile organic compounds emission, wood stove

Abstract

Pollutant residential emissions from wood stoves have significant impacts both on the environment and people's health. The above makes it essential to know the types of volatile organic compounds emitted during combustion and explore their relationship with particulate matter and greenhouse gas emissions. This paper studies and analyzes these emissions using Eucalyptus globulus as fuel varying its moisture levels. Emissions were determined using an adapted commercial stove. The concentration levels of volatile organic compounds and particulate matter increase with the moisture of wood. When analyzing volatile organic compounds, particulate matter, and O2 with the combustion stages of wood, it is found that their concentrations were higher in the ignition and the reload stage. The concentrations of CO2 and NOx were higher in the reload stage. Other chemical compounds, such as toluene, xylene, and benzene, were also found within the volatile organic compounds listing, which increased their concentration in the ignition and stable reload stages. However, in the quenching stage, they are not present. Finally, the dispersion of these molecules in the environment is evaluated, obtaining that if the atmospheric conditions are adverse, these molecules remain in the environment in direct contact with the people living in those places.

Downloads

Download data is not yet available.

References

Aliyu, A.S.; Ramli, A.T.; Saleh, M.A. 2015. Assessment of potential human health and environmental impacts of a nuclear power plant (NPP) based on atmospheric dispersion modeling. Atmósfera 28: 13-26. https://doi.org/10.1016/S0187-6236(15)72156-9

Allen, G.A.; Miller, P.J.; Rector, L.J.; Brauer, M.; Su, J.G. 2011. Characterization of valley winter woodsmoke concentrations in Northern NY using highly time-resolved measurements. Aerosol Air Qual Res 11(5): 519-530. https://doi.org/10.4209/aaqr.2011.03.0031

Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; et al. 2015. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ inter 75: 151-158. https://doi.org/10.1016/j.envint.2014.11.011

Bede-Ojimadu, O.; Orisakwe, O.E. 2020. Exposure to Wood Smoke and Associated Health Effects in Sub-Saharan Africa: A Systematic Review. Ann Glob Health 86(1): 32. http://doi.org/10.5334/aogh.2725

Berrueta, V. M.; Serrano-Medrano, M.; García-Bustamante, C.; Astier, M.; Masera, O. 2017. Promoting sustainable local development of rural communities and mitigating climate change: the case of Mexico´s Patsari improved cookstove program. Clim Change 140: 63-77. https://doi.org/10.1007/s10584-015-1523-y

Bustos, Y.; Ferrada, L.M. 2017. Consumo residencial de leña, análisis para la ciudad de Osornoen Chile. Idesia 35(2). https://doi.org/10.4067/S0718-34292017005000024

Bruce, N.; Perez-Padilla, R.; Albalak, R. 2000. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull World Health Organ 78(9): 1078-1092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560841/pdf/11019457.pdf

Burschnel, H.; Hernández, A.; Lobos, M. 2003. Leña: Una fuente energética renovable para Chile. Editorial Universitaria, Santiago, Chile.

Canha, N.; Almeida, M.; do Carmo, M.; Almeida, S.; Wolterbeek, H. 2011. Seasonal variation of total particulate matter and children respiratory diseases at Lisbon primary schools using passive methods. Procedia Environ Sci 4: 170-183. https://doi.org/10.1016/j.proenv.2011.03.021

Chilean Superintendence of Energy and Fuels. SEC. 2020. Superintendencia de Electricidad y Combustibles. Santiago, Chile. (In Spanish). https://www.sec.cl/area-sec/organigrama-sec/

Chromeleon 2013. Chromeleon 7.2 software package. https://www.thermofisher.com/order/catalog/product/CHROMELEON7#/CHROMELEON7,

Csavina, J.; Field, J.; Félix, O.; Corral-Avitia, A.; Sáez, A.; Betterton, E. 2014. Effect of Wind Speed and Relative Humidity on Atmospheric Dust

Concentrations in Semi-Arid Climates. Sci Total Environ 487: 82-90. https://doi.org/10.1016/j.scitotenv.2014.03.138

De Nevers, N. 1998. Ingeniería de control de la contaminación del aire. Mac Graw-Hill Interamericana, México.

Evtyugina, M.; Alves, C.; Calvo, A.; Nunes, T.; Tarelho, L.; Duarte, M.; Prozil, S.; Evtuguin, D.; Casimiro, Pio. 2014. VOC emissions from residential combustion of Southern and mid-European. Atmos Environ 89: 90-98. https://doi.org/10.1016/j.atmosenv.2013.10.050

Ezzati, M.; Salish, H.; Kammen, D. 2002. The contributions of emission and spatial microenvironments to exposure to indoor air pollutions from biomass combustion in Kenya. Environ Health Perspect 108(9): 833-839. https://doi.org/10.1289/ehp.00108833

Food and Agricultural Organization. FAO. 2017. Incentivizing Sustainable Wood Energy in Sub-Saharan Africa: A Way Forward for Policy. Food and Agriculture Organization of the United Nations. Rome, Italy. http://www.fao.org/3/a0806t/a0806t00.htm

Gaeggeler, K.; Prevot, A.; Dommen, J.; Legreid, G.; Reimann, S.; Baltensperger, U. 2008. Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids. Atmos Environ 42(35): 8278-8287. https://doi.org/10.1016/j.atmosenv.2008.07.038

Gonçalves, C.; Alves, C.; Evtyugina, M.; Mirante, F.; Pio, C.; Caseiro, A.; Schmidl, C.; Bauer, H.; Carvalho, F. 2010. Characterisation of PM10 emissions from woodstove combustion of common woods grown in Portugal. Atmos Environ 44: 4474-4480. https://doi.org/10.1016/j.atmosenv.2010.07.026

Grineski, S.; Clark-Reyna, S.; Collins, T. 2016. Collins, School-based exposure to hazardous air pollutants and grade point average: A multi-level study. Environ Res 147: 164-171. https://doi.org/10.1016/j.envres.2016.02.004

Guerrero, F.; Yáñez, K.; Vidal, V.; Cereceda-Balic, F. 2019. Effects of wood moisture on emission factors for PM2. 5, particle numbers and particulate-phase PAHs from Eucalyptus globulus combustion using a controlled combustion chamber for emissions. Sci Total Environ 648: 737-744. https://doi.org/10.1016/j.scitotenv.2018.08.057

Haro, A.; Limáico, C.; Perugachi, N.; Fernández, M. 2018. Evaluación de la Estabilidad Atmosférica Bajo Condiciones Físicas y Meteorólogicas del Altiplano Ecuatoriano. Rev Bras meteorol 33(2): 336-343. https://doi.org/10.1590/0102-7786332015

Hernández, D.; Quinteros-Lamas, H.; Tenreiro, C.; Gabriel, D. 2019. Assessing Concentration Changes of Odorant Compounds in the Thermal-Mechanical Drying Phase of Sediment-Like Wastes from Olive Oil Extraction. Appl Sci 9(3): 519. https://doi.org/10.3390/app9030519

International Agency for Research on Cancer. IARC. 1982. Some industrial chemical and dyestuffs. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France. 29: 95-148. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Industrial-Chemicals-And-Dyestuffs-1982

International Agency for Research on Cancer. IARC. 2015. Monographs on the Evaluation of Carcinogenic Risks to Humans: Outdoor Air Pollution. In IARC monographs 109th edition. IARC, Lyon, France. 109: 35-50. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Outdoor-Air-Pollution-2015

Kim, K.; Jahan, S.; Kabir, E. 2011. A review of diseases associated with household air pollution due to the use of biomass fuels. J Hazard Mater 192(2): 425-431. https://doi.org/10.1016/j.jhazmat.2011.05.087

Languille, B.; Gros, V.; Petit, J.E.; Honoré, C.; Baudic, A.; Perrussel, O.; Forest, G.; Michound, V. et al. 2020. Wood burning: A major source of Volatile Organic Compounds during wintertime in the Paris region Sci Total Environ 711: 135055. https://doi.org/10.1016/j.scitotenv.2019.135055

Lancaster, M. 2002. Green chemistry: A introductory text. Royal Society of Chemistry, UK. 163-168.

Molina-Mercader, G.; Angulo, A.; Sanfuentes, E.; Olivares, T.; Castillo-Salazar, M.; Goycoolea, C. 2019. Detección y distribución de Ophelimus migdanorum y su posible biocontrolador Closterocerus chamaeleon en áreas productivas de Eucalyptus globulus en Chile. Chil J Agric Res 79(3): 337-346. https://dx.doi.org/10.4067/S0718-58392019000300337

Matus, P.; Oyarzún, M. 2019. Impacto del Material Particulado aéreo (MP2,5) sobre las hospitalizaciones por enfermedades respiratorias en niños: estudio caso-control alterno. Rev Chil Pediatr 90(2): 166-174. http://dx.doi.org/10.32641/rchped.v90i2.750

McDonald, J.; Zielinska, B.; Fujita, E.; Sagebiel, J.; Chow, J.; Watson, J. 2000. Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34(11): 2080-2091. https://doi.org/10.1021/es9909632

Naeher, L.; Brauer, M.; Lipsett, M.; Zelikoff, J.; Simpson, C.; Koenig, J.; Kirk, S. 2007. Woodsmoke Health Effects: A Review. Inhal Toxicol 19: 67–106. https://doi.org/10.1080/08958370600985875

Nascimento, A.P.; Santos, J.M.; Mill, J.G.; Toledo de Almeida Albuquerque, T.; Reis Júnior, N.C.; Reisen, V.A.; Pagel, É.C. 2020. Association between the incidence of acute respiratory diseases in children and ambient concentrations of SO2, PM10 and chemical elements in fine particles. Environ Res 188: 109619. https://doi.org/10.1016/j.envres.2020.109619

National Institute of Standards and Technology. NIST. 2010. Chemistry Webbook. Secretary of Commerce, United States of America. http://webbook.nist.gov/chemistry

Olsen, Y.; Nøjgaard, J.K.; Olesen, H.R.; Brandt, J.; Sigsgaard, T.; Pryor, S.C.; Ancelet, T.; del Mar, M.; Querol, X.; Hertel, O. 2020. Emissions and source allocation of carbonaceous air pollutants from wood stoves in developed countries: A review. Atmos Pollut Res 11(2): 234-251. https://doi.org/10.1016/j.apr.2019.10.007

Oyarzún, M. 2010. Contaminación aérea y sus efectos en la salud. Rev chil de enferm respir 26(1): 16–25. http://dx.doi.org/10.4067/S0717-73482010000100004

Ozil, F.; Tschamber, V.; Haas, F.; Trouvé, G. 2009. Efficiency of catalytic processes for the reduction of CO and VOC emissions from wood combustion in domestic fireplaces. Fuel Process Technol 90(9): 1053-1061. https://doi.org/10.1016/j.fuproc.2009.03.019

Price-Allison, A.; Lea-Langton, A.R.; Mitchell, E.J.S.; Gudka, B.; Jones, J.M.; Mason, P.E.; Williams, A. 2019. Emissions performance of high moisture wood fuels burned in a residential stove. Fuel 239: 1038-1045. https://doi.org/10.1016/j.fuel.2018.11.090

Poláčik, J.; Sitek, T.; Pospíšil, J.; Šnajdárek, L.; Lisý, M. 2021. Emission of fine particles from residential combustion of wood: Comparison of automatic boiler, manual log feed stove and thermo-gravimetric analysis. J Clean Prod 279: 123664. https://doi.org/10.1016/j.jclepro.2020.123664

Reyes, R.; Sanhueza, R.; Schuehtan, A. 2020a. Consumo de combustibles derivados de la madera en la región de O’Higgins: El desconocido rol de frutales y viñas en el abastecimiento regional de energía. Informes técnicos BES, Bosque – Energía – Sociedad. 6: 11. Observatorio de los Combustibles Derivados de la Madera OCDM. Instituto Forestal, Chile. 17 p. https://www.infor.cl

Reyes, R., Sanhueza, R., Schueftan, A. 2020b. Consumo de leña y otros biocombustibles sólidos en la región de la Araucanía. Nuevas cifras y tendencias. Informes Técnicos BES, Bosques-Energía-Sociedad. Instituto Forestal, Chile. 6(12): 23. https://www.infor.cl

Rinsky, R.A.; Smith, A.B.; Hornung, R.; Filloon, T.G.; Young, R.J.; Okun, A.H.; Landrigan, P.J. 1987. Benzene and leukemia. NEJM 316(17): 1044-1050. https://doi.org/10.1056/NEJM198704233161702

Radaideh, J. 2017. Effect of Meteorological Variables on Air Pollutants Variation in Arid Climates. J Environ Anal Toxicol 7: 4. https://doi.org/10.4172/2161-0525.1000478

Rokoff, L.; Koutrakis, P.; Garshick, E.; Karaga, M.; Oken, E.; Gold, D.; Fleisch, A. 2017. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among pediatricians. Curr Probl Pediatr Adolesc Health Care 47(6): 123-141. https://doi.org/10.1016/j.cppeds.2017.04.001

Sáenz-Ceja, J.; Sáenz-Reyes, T.; Ríos, E. 2017. Estufas ahorradoras de leña en la microcuenca Rosa de Castilla, Michoacán. Revista Mitigación del Daño Ambiental Agroalimentario y Forestal de México 3: 13-24.

Satsangi, P.S.; Yadav; S., Pipal, A.S.; Kumbhar, N. 2014. Characteristics oftrace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmos Environ 92: 384-39. https://doi.org/10.1016/j.atmosenv.2014.04.047

Sinha, S.N.; Kulkarni, P.K.; Shah, S.H.; Desai, N.M.; Patel, G.M.; Mansuri, M.M.; Saiyed, H.N. 2006. Environmental monitoring of benzene and toluene produced in indoor air due to combustion of solid biomass fuels. Sci Total Environ 357(1-3): 280-287. https://doi.org/10.1016/j.scitotenv.2005.08.011

Smith, K.R. 2000. National burden of disease in India from indoor air pollution. In Proceedings of the National Academy of Sciences 97(24): 13286-13293. https://doi.org/10.1073/pnas.97.24.13286

Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Oduber, F.I.; Amato, F.; Querol, X.; Alves. C. 2020. Impact of wood combustion on indoor air quality. Sci Total Environ 705: 135769. https://doi.org/10.1016/j.scitotenv.2019.135769

Weinstein, J.; Diaz-Artiga, A.; Benowitz, N.; Thompson. L. 2020. Reductions in urinary metabolites of exposure to household air pollution in pregnant, rural Guatemalan women provided liquefied petroleum gas stoves. JESEE 30: 362–373. https://doi.org/10.1038/s41370-019-0163-0

Wöhler, M.; Andersen, J.S.; Becker, G.; Persson, H.; Reichert, G.; Schön, C.; Schmidl, C.; Jaeger, D.; Pelz, S. 2016. Investigation of real life operation of biomass room heating appliances–Results of a European survey. Appl Energy 169: 240-249. https://doi.org/10.1016/j.apenergy.2016.01.119

Wolkoff, P. 1998. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products. Atmos environ 32(14-15): 2659-2668. https://doi.org/10.1016/S1352-2310(97)00402-0

Wu, C.F.; Wu, S.Y.; Wu, Y.H.; Cullen, A.C.; Larson, T.V.; Williamson, J.; Liu, L.J.S. 2009. Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Inter 35(3): 516-522. https://doi.org/10.1016/j.envint.2008.09.009

Zhou, C.; Zhan, Y.; Chen, S.; Xia, M.; Ronda, C.; Sun, M.; Shen, X. 2017. Combined effects of temperature and humidity on indoor VOCs pollution: Intercity comparison. Build Environ 121: 26-34. https://doi.org/10.1016/j.buildenv.2017.04.013

Downloads

Published

2022-12-04

How to Cite

Henríquez, F. ., Hernández, D. ., Varas-Concha, F. ., Gutierrez, C. ., Quinteros-Lama, H. ., & Morales-Ferreiro, J. O. . (2022). VOCs and PM listing of Eucalyptus globulus combustion in residential wood stoves. Maderas. Ciencia Y Tecnología, 25, 1–14. https://doi.org/10.4067/s0718-221x2023000100412

Issue

Section

Article