Comparing the structure of spruce wood biodegraded by Trametes versicolor and Gloeophyllum trabeum and further utilization of this material

Authors

  • Oľga Mišíková
  • Barbora Slováčková

DOI:

https://doi.org/10.4067/s0718-221x2023000100419

Keywords:

Anatomy of wood, Gloeophyllum trabeum, light microscopy, spruce wood, Trametes versicolor

Abstract

Development of new materials puts a great emphasis on saving production costs, energy, decreasing the amount and number of chemicals used during the manufacturing process. Bio-based materials can be ecologically produced and recycled after their lifespan, which saves the environment. The recent interest in bio-based materials led to the objective of this work. In this article, the structure of spruce wood (Picea abies) biodegraded by the white-rot fungus Trametes versicolor and brown-rot fungus Gloeophyllum trabeum was studied. Structure of the wood was observed macroscopically and microscopically. Classic and unusual stain combinations were used in this work. Ethanol was intentionally omitted in the process of making permanent mounts. It was done to preserve the coherence of the decayed microsections and to keep small fragments from being rinsed away. Results of the observations suggest that spruce wood decayed by these fungi could be used as an insulation material. Wood decaying fungi decrease the density of wood and increase its porosity. A low density and high porosity are important properties for insulation materials. According to the results, spruce wood decayed by Trametes versicolor would be more suitable to be used as an insulating material.

Downloads

Download data is not yet available.

References

Bader, T.K.; Hofstetter, K.; Alfredsen, G.; Bollmus, S. 2012. Microstructure and stiffness of Scots pine (Pinus sylvestris L) sapwood degraded by Gloeophyllum trabeum and Trametes versicolor – Part I: Changes in chemical, composition, density, and equilibrium moisture content. Holzforschung 66(2): 191-198. https://doi.org/10.1515/HF.2011.149

Bari, E.; Nazarnezhad, N.; Kazemi, S.M.; Tajick-Ghanbary, M.A.; Mohebby, B.; Schmidt, O.; Clausen, C.A. 2015. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. Int Biodeterior Biodegrad 104: 231-237. https://doi.org/10.1016/j.ibiod.2015.03.033

Bari, E.; Mohebby, B.; Naji, H.R.; Oladi, R.; Yilgor, N.; Nazarnezhad, N.; Ohno, K.M.; Nicholas, D.D. 2018. Monitoring the cell wall characteristics of degraded beech wood by white-rot fungi: anatomical, chemical, and photochemical study. Maderas-Cienc Tecnol 20(1): 35-56. https://doi.org/10.4067/S0718-221X2018005001401

Bari, E.; Daryaei, M.G.; Karim, M.; Bahmani, M.; Schmidt, O.; Woodward, S.; Ghanbary, M.A.T.; Sistani, A. 2019. Decay of Carpinus betulus by Trametes versicolor - An anatomical and chemical study. Int Biodeterior Biodegrad 137: 68-77. https://doi.org/10.1016/j.ibiod.2018.11.011.

Bari, E.; Daniel, G.; Yilgor, N.; Kim, J.S.; Tajick-Ghanbary, M.A.; Singh, A.P.; Ribera, J. 2020. Comparison of the Decay behavior of Two White-Rot Fungi in Relation to Wood Type and Exposure Conditions. Microorganisms 8(12): 1931. https://doi.org/10.3390/microorganisms8121931

Cartwright, K.ST.G.; Findlay, W.P.K. 1929. A satisfactory method of staining fungal mycelium in wood sections. Ann Bot 43(2): 412-413. https://academic.oup.com/aob/article-abstract/os-43/2/412/155501?redirectedFrom=fulltext

Daniel, G.; Volc, J.; Nilsson, T. 1992. Soft-rot and multiple branching by the basidiomycete Oudemansiella mucida. Mycol Res 96(1): 49–54. https://doi.org/10.1016/S0953-7562(09)80995-7

Duncan, C.G. 1960. Wood attacking capabilities and physiology of soft-rot fungi. Forest Products Laboratory, US Department of Agriculture, Report No. 2173, Madison, WI, USA. https://ir.library.oregonstate.edu/concern/defaults/br86b7583?locale=en

Fackler, K.; Gradinger, C.; Schmutzer, M.; Tavzes, C.; Burgert, I.; Schwanninger, M.; Hinterstoisser, B.; Watanabe, T.; Messner, K. 2007. Biotechnological Wood Modification with Selective White- Rot Fungi and Its Molecular Mechanisms. Food Technol Biotechnol 45(3): 269-276. https://www.ftb.com.hr/archives/72-volume-45-issue-no-3/327-biotechnological-wood-modification-with-selective-white-rot-fungi-and-its-molecular-mechanisms

Glass, S.V.; Zelinka, S.L. 2010. Chapter 4. Moisture Relations and Physical Properties of Wood. In: Wood Handbook – Wood as an engineering material. Robert J. Ross, E. E. (Eds.). General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest service, Forest Products Laboratory, Madison WI, USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf

Herr, J.M. 1992. New uses for calcium chloride solution as a mounting medium. Biotech Histochem 67(1): 9-13. https://doi:10.3109/10520299209109998.

Hill, C.A.S. 2011. Wood modification: An update. BioResources 6(2): 918-919. https://bioresources.cnr.ncsu.edu/resources/wood-modification-an-update/

Hubbe, M.A.; Chandra, R.P.; Dogu, D.; van Velzen, S.T.J. 2019. Analytical Staining of Cellulosic Materials: A Review. BioResources 14(3): 7387-7464. https://bioresources.cnr.ncsu.edu/resources/analytical-staining-of-cellulosic-materials-a-review/

Jensen, W.A. 1962. Botanical Histochemistry. Freeman, San Francisco, London, United Kindgom.

Kleist, G.; Schmitt, U. 2001. Characterization of a soft-rot-like decay pattern caused by Coniophora puteana (Schum.) Karst. in Sapelli wood (Entandrophragma cylindricum Spague). Holzforschung 55(6): 573–578. https://doi.org/10.1515/HF.2001.093

Kúdela, J.; Čunderlík, I. 2012. Bukové drevo – štruktúra, vlastnosti, použitie. Technical University at Zvolen, Zvolen, Slovak Republic (Beech wood – structure, properties, and use - In Slovak)

Mai, C.; Kües, U.; Militz, H. 2004. Biotechnology in the wood industry. App Microbiol Biotechnol 63: 477–494. https://doi.org/10.1007/s00253-003-1411-7

Majcherczyk, A.; Hüttermann, A. 1998. Bioremediation of wood treated with preservative using white-rot fungi. In: Forest products biotechnology. Bruce A, E. E., Palfreyman JW, E. E. (Eds). Taylor and Francis, London, United Kingdom. https://www.taylorfrancis.com/chapters/edit/10.1201/9781482272734-10/bioremediation-wood-treated-preservatives-using-white-rot-fungi-majcherczyk-h%C3%BCttermann

Messner, K.; Fackler, K.; Lamaipis, P.; Gindl, W.; Srebotnik, E.; Watanabe, T. 2002. Biotechnological wood modification. Proceedings of the international symposium on wood-based materials. part 2. Vienna University, pp 45–49.

Pavlík, M. 2013. Možnosti využitia schopností a vlastností vybraných druhov drevokazných húb: vedecká štúdia. Technical University at Zvolen, Zvolen, Slovak Republic (Possibilities of using the abilities and properties of chosen wood decay fungi species: A scientific study - In Slovak)

Reinprecht, L. 1998 Procesy degradácie dreva. 2nd edition. Technical University at Zvolen, Zvolen, Slovak Republic (Processes of wood degradation – In Slovak)

Schilling, J.S.S.; Duncan, S.M.; Presley, G.N.; Filley, T.R.; Jurgens, J.A.; Blanchette, R.A. 2013. Colocalizing incipient reactions in wood degraded by the brown rot fungus Postia placenta. Int Biodeterior Biodegrad 83: 56-62. https://doi.org/10.1016/j.ibiod.2013.04.006

Schmidt, O. 2006. Wood and Tree Fungi: Biology, Damage, Protection, and Use. Springer Berlin Heidelberg, Germany. https://link.springer.com/book/10.1007/3-540-32139-X

Schwarze, F.W.M.R.; Lonsdale, D.; Fink, S. 1995. Soft-rot and multiple T-branching by the basidiomycete Inonotus hispidus in ash and London plane. Mycol Res 99(7): 813-820. https://doi.org/10.1016/S0953-7562(09)80732-6

Schwarze, F.W.M.R.; Fink, S. 1997. Reaction zone penetration and prolonged persistence of xylem rays in London plane wood degraded by the basidiomycete Inonotus hispidus. Mycol Res 101(10): 1201-1214. https://doi.org/10.1017/S0953756297003808

Schwarze, F.W.M.R.; Fink, S. 1998. Host and cell type affect the mode of degradation by Meripilus giganteus. New Phytol 139(4): 721-731. https://doi.org/10.1046/j.1469-8137.1998.00238.x

Schwarze, F.W.M.R.; Engels, J. 1998. Cavity formation and the exposure of peculiar structures in the secondary wall (S2) of tracheids and fibres by wood degrading basidiomycetes. Holzforschung 52(2): 117-123. https://doi.org/10.1515/hfsg.1998.52.2.117

Schwarze, F.M.W.R.; Baum, S.; Fink, S. 2000a. Dual modes of degradation by Fistulina hepatica in xylem cell walls of Quercus robur. Mycol Res 104(7): 846-852. https://doi.org/10.1017/S0953756299002063

Schwarze, F.M.W.R.; Baum, S.; Fink, S. 2000b. Resistance of fibre regions in wood of Acer pseudoplatanus degraded by Armillaria mellea. Mycol Res 104(9): 126-132, https://doi.org/10.1017/S0953756200002525

Schwarze, F.M.W.R.; Fink, S.; Deflorio, G. 2003. Resistance of parenchyma cells on wood to degradation by brown rot fungi. Mycol Prog 2(4): 267-274. https://link.springer.com/article/10.1007/s11557-006-0064-1

Schwarze, F.W.M.R.; Engels, J.; Matthek, C. 2004. Fungal strategies of wood decay in trees. 2nd ed. Springer Berlin, Heidelberg, New York, USA.

Schwarze, F.M.W.R.; Spycher, M. 2005. Resistance of thermo-hygro-mechanically densified wood to colonisation and degradation by brown-rot fungi. Holzforschung 59(3): 358-363. https://doi.org/10.1515/HF.2005.059

Schwarze, F.W.M.R. 2007. Wood decay under the microscope. Fun Biol Rev 21(4): 133-170. https://doi.org/10.1016/j.fbr.2007.09.001

Schwarze, F.W.M.R. 2008. Diagnosis and prognosis of the development of wood decay in urban trees. ENSPEC, Melbourne, Australia.

Schwarze, F.W.M.R.; Schubert, M. 2011. Physisnosporinus vitreus: a versatile white rot fungus for engineering value-added wood products. App Microbiol Biotechnol 92: 431-440. https://doi.org/10.1007/s00253-011-3539-1

Slováčková, B. 2021a. Thermal conductivity of spruce, beech and oak heartwood degraded with Trametes versicolor L. Lloyd. Acta Fac Xylologiae 63(1): 5–15. https://www.tuzvo.sk/sk/afxz-scientific-journal-12021-0

Slováčková, B. 2021b. Porosity of beech and oak heartwood degraded by Trametes versicolor L. Lloyd (Fagus sylvatica, L. and Quercus petraea, Matt. Liebl). 9th Hardwood Proceedings, Part II, 9(2): 98-104. http://www.hardwood.uni-sopron.hu/wp-content/uploads/2021/06/HWC2020_proceedings_final_online_II.pdf

Slováčková, B. 2021c. Nepriame úlohy z identifikácie fyzikálnych polí v hnilom dreve: Dizertačná práca. [Ph. D. thesis, Technical University at Zvolen] Zvolen (Inverse problems in physical fields identification in decayed wood. Ph. D. thesis - In Slovak)

Slováčková, B.; Mišíková, O. 2021 Permeability of three wood species degraded by Trametes versicolor L. Lloyd. Acta Fac Xylologiae 63(2): 5-15. https://df.tuzvo.sk/sites/default/files/01-02-21_0_0_0.pdf

Solár, R.; Kurjatko, S.; Mamoň, M.; Neuschlová, E.; Hudec, J. 2006. Selected chemical and physical properties of beech wood degraded by wood destroying fungi. Part 1: degradation by Trametes versicolor. Wood Structure and Properties ’06. Pp.381-387.

Srebotnik, E.; Messner, K. 1994. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60(4): 1383-1386. https://pubmed.ncbi.nlm.nih.gov/16349245/

Slovak Standards Institute. STN. 1998. Wood preservatives. Test method for determining the protective effectiveness against wood destroying basiodiomycetes. Determination of the toxic values. STN EN 113. Bratislava, Slovakia.

Unbehaun, H.; Dittler, B.; Kuhne, G.; Wagenfuhr, A. 2000. Investigation into the biotechnological modification of wood and its application in the wood-based material industry. Acta Biotech 20(3-4): 305-312. https://onlinelibrary.wiley.com/doi/abs/10.1002/abio.370200311

Vaukner Gabrič, M.; Boncina, T.; Humar, M.; Pohleven, F., 2016. Laccase treatment of Norway spruce wood surface improves resistance and copper fixation of treated wood. Drewno 59(198): 19-33. https://doi.org/10.12841/wood.1644-3985.179.10

Wilcox, W.W. 1973. Degradation in relation to wood structure. In: Wood deterioration and its preservation by preservative treatments. Nicholas, D.D. (Ed.) Syracuse University Press, Syracuse, USA.

Wilcox, W.W. 1993. Comparative morphology of early stages of brown-rot wood decay. IAWA Journal, 14(2): 127-138. https://brill.com/view/journals/iawa/14/2/article-p127_2.xml

Worrall, J.J.; Anagnost, E.; Zabel, R.A. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89(2): 199-219. https://doi.org/10.1080/00275514.1997.12026772

Yilgor, N.; Dogu, D.; Moore, R.; Terzi, E.; Kartal, S.N. 2013 Evaluation of Fungal Deterioration in Liquidambar orientalis Mill. Heartwood by FT-IR and Light Miscroscopy. BioResources 8(2): 2805-2826. https://bioresources.cnr.ncsu.edu/resources/evaluation-of-fungal-deterioration-in-liquidambar-orientalis-mill-heartwood-by-ft-ir-and-light-microscopy/

Downloads

Published

2023-02-13

How to Cite

Mišíková, O. ., & Slováčková, B. . (2023). Comparing the structure of spruce wood biodegraded by Trametes versicolor and Gloeophyllum trabeum and further utilization of this material. Maderas-Cienc Tecnol, 25, 1–14. https://doi.org/10.4067/s0718-221x2023000100419

Issue

Section

Article