Determination of processing characteristics of wood materials densified by compressing

Authors

  • Mustafa Tosun
  • Sait Dundar Sofuoglu

DOI:

https://doi.org/10.4067/s0718-221x2023000100427

Keywords:

Densification, machining, Populus nigra, roughness, thermo-mechanics, wood material

Abstract

The main objective of this study is to determine optimum cutting parameters in order to specify the effect of densification by compressing on the processing properties of solid wood material and to achieve the best surface quality in materials densified at different rates. In line with this goal, the widely grown and low-density black poplar (Populus nigra) tree species were selected as the experimental material. Samples, which were compressed and densified by Thermo-Mechanical method at 0 %, 20 % and 40 % ratios, were processed at 1000 mm/min, 1500 mm/min and 2000 mm/min feed speeds and in 12000 rpm, 15000 rpm, 18000 rpm rotation speed on a computer numerical control machine by using two different cutters. Surface roughness values (Ra and Rz) were measured in order to evaluate surfaces obtained. Smoother surfaces were obtained in computer numerical control machining of densified samples. The lowest surface roughness values occurred in 40 % densified samples, which were the densest. The lowest surface roughness was obtained when 40 % densified samples were processed with cutter no.1, at 1000 mm/min feed speed and at 18000 rpm.

Downloads

Download data is not yet available.

References

Ábrahám, J.; Németh, R.; Molnár, S. 2010. Thermo-mechanical densification of Pannónia Poplar. In Proceedings of the Quality Control for Wood and Wood Products. COST Action E53, 4–7 May 2010, Edinburgh, UK.

Ábrahám, J.; Németh, R. 2012. Physical and mechanical properties of thermo-mechanically densified poplar. In Proceedings of the International Scientific Conference on Sustainable Development and Ecological Foorprint. 26-27 March 2012, Sopron, Hungary.

Ahmed, S.A.; Morén, T.; Hagman, O.; Cloutier, A.; Fang, C.H.; Elustondo, D. 2013. Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression. J Mater Sci 48(24): 8571–8579. https://doi.org/10.1007/s10853-013-7679-9

Arruda, L.M.; Del Menezzi, C.H.S. 2013. Effect of thermomechanical treatment on physical properties of wood veneers. Int Wood Prod J 4(4): 217–224. https://doi.org/10.1179/2042645312Y.0000000022

Aykac, E.; Sofuoglu, S. D. 2021. Investigation of the effect of machining parameters on surface quality in Bamboo. Tehnički Vjesnik 28(2): 684–688. https://doi.org/10.17559/TV-20200102202928.

Bal, B.C. 2018. The effects of some tool paths adjustments of CNC machines on surface roughness and processing time of fiberboards. Furmaj 1(1): 21–30. https://doi.org/10.33725/mamad.427588

Bal, B.C.; Akçakaya, E. 2018. The effects of step over, feed rate and finish depth on the surface roughness of fiberboard processed with CNC machine. Furmaj 1(2): 86–93. https://doi.org/10.33725/mamad.481278

Bami, L.K.; Mohebby, B. 2011. Bioresistance of poplar wood compressed by combined hydro-thermo-mechanical wood modification (CHTM): Soft rot and brown-rot. Int Biodeterior Biodegradation 65(6): 866–870. https://doi.org/10.1016/j.ibiod.2011.03.011

Bekhta, P.; Krystofiak, T. 2016. The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas-Cienc Tecnol 18(1): 79-90. https://doi.org/10.4067/S0718-221X2016005000008

Blomberg, J.; Persson, B.; Blomberg, A. 2005. Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Sci Technol 39(5): 339–350. https://doi.org/10.1007/s00226-005-0290-8

Blomberg, J.; Persson, B. 2004. Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci 50(4): 307–314. https://doi.org/10.1007/s10086-003-0566-2

Budakci, M.; Ilce, A.C.; Korkut, D. S.; Gurleyen, T. 2011. Evaluating the surface roughness of heat-treated wood cut with different circular saws. BioResources 6(4), 4247-4258.

Budakci, M.; Pelit, H.; Sonmez, A.; Korkmaz, M. 2016. The effects of densification and heat post-treatment on hardness and morphological properties of wood materials. BioResources 11(3): 7822-7838. https://doi.org/10.15376/biores.11.3.7822-7838

Cruz, N.; Bustos, C.; Aguayo, M.G.; Cloutier, A.; Castillo, R. 2018. Impact of the chemical composition of pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification. BioResources 13(2): 2268-2282. https://doi.org/10.15376/biores.13.2.2268-2282

Davim, J.P.; Clemente, V.C.; Silva, S. 2009. Surface roughness aspects in milling MDF (Medium Density Fibreboard). Int J Adv Manuf Technol 40(1-2): 49-55. https://doi.org/10.1007/s00170-007-1318-z

Diouf, P.N.; Stevanovic, T.; Cloutier, A.; Fang, C.H.; Blanchet, P.; Koubaa, A.; Mariotti, N. 2011. Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257(8): 3558-3564. https://doi.org/10.1016/j.apsusc.2010.11.074

Esteves, B.; Ribeiro, F.; Cruz-Lopes, L.; Ferreira, J.; Domingos, I.; Duarte, M.; Duarte, S.; Nunes, L. 2017. Densification and heat treatment of maritime pine wood. Wood Res 62(3): 373-388. http://www.woodresearch.sk/wr/201703/04.pdf

Fang, C.H.; Mariotti, N.; Cloutier, A.; Koubaa, A.; Blanchet, P. 2012. Densification of wood veneers by compression combined with heat and steam. Eur J Wood Prod 70(1–3): 155–163. https://doi.org/10.1007/s00107-011-0524-4

Fleischhauer, R.; Hartig, J.U.; Haller, P.; Kaliske, M. 2019. Moisture-dependent thermo-mechanical constitutive modeling of wood. Eng Comput 36(1): 2–24. https://doi.org/10.1108/EC-09-2017-0368.

Gaff, M.; Gašparík, M. 2013. Shrinkage and stability of thermo-mechanically modified aspen wood. BioResources 8(1): 1136-1146. https://doi.org/10.15376/biores.8.1.1136-1146

Gao, Z.; Huang, R.; Chang, J. Li, R.; Wu, Y. 2019. Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood. BioResources 14(1): 1718–1730 https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_1_1718_Gao_Pressurized_Superheated_Steam_Treatment

Gong, M.; Lamason, C.; Li, L. 2010. Interactive effect of surface densification and post-heat-treatment on aspen wood. J Mater Process Technol 210(2): 293–296. https://doi.org/10.1016/j.jmatprotec.2009.09.013

Hajihassani, R., Mohebby, B., Najafi, S.K.; Navi, P. 2018. Influence of combined hygro-thermomechanical treatment on technical characteristics of poplar wood. Maderas-Cienc Tecnol 20(1): 117–128. https://doi.org/10.4067/S0718-221X2018005011001

Hazir, E.; Erdinler, E.S.; Koc, K.H. 2018. Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function. J For Res 29(5): 1423–1434. https://doi.org/10.1007/s11676-017-0555-8

Hiziroglu, S. 1996. Surface roughness analysis of wood composites: a stylus method. Forest Prod J 46(7-8): 67-72. https://www.proquest.com/openview/2e7a7f7cd74116bf06674

Homan, W.; Tjeerdsma, B.; Beckers, E.; Jorissen, A. 2000. Structural and other properties of modified wood. In Proceedings of the World Conference on Timber Engineering, Whisthler Resort, B.C., Canada.

Ilter, E.; Camliyurt, C.; Balkiz, O.D. 2002. Researches on the determination of the surface roughness values of Bornmullerian fir (Abies bornmülleriana Mattf.). Technical Bulletin No: 283. Central Anatolia Forestry Research Institute, Ankara,Turkey.

International Organization for Standardization. 1975. Wood determination of moisture content for physical and mechanical tests. ISO 3130. ISO, Geneva, Switzerland. https://www.iso.org/standard/8288.html

International Organization for Standardization. 2014. Wood-determination of density for physical and mechanical tests. ISO 13061. ISO, Geneva, Switzerland. https://www.iso.org/standard/8289.html

International Organization for Standardization. 1982. Surface roughness- Parameters, their values and general rules for specifying requirements. ISO 468. ISO, Geneva, Switzerland. https://www.iso.org/standard/4496.html

International Organization for Standardization. 2017. Geometrical Product Specifications (GPS) - Surface texture: Profile method - Nominal characteristics of contact (stylus) instruments. ISO 3274. ISO, Geneva, Switzerland. https://www.iso.org/standard/1916.html

International Organization for Standardization. 2015. Geometrical Product Specifications (GPS)-Surface texture: Profile method- Terms, definitions and surface texture parameters. ISO 4287. ISO, Geneva, Switzerland. https://www.iso.org/standard/10132.html

Isleyen, U.K.; Karamanoglu, M. 2019. The influence of machining parameters on surface roughness of MDF in milling operation. BioResources 14(2): 3266–3277. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_2_3266_Isleyen_Machining_Parameters_Surface_Roughness

Kamke, F.A. 2006. Densified radiata pine for structural composites. Maderas-Cienc Tecnol 8(2): 83–92. https://doi.org/10.4067/S0718-221X2006000200002

Karagoz, U. 2010. Investigation of machining parameters on the surface quality in CNC routing wood and wood-based materials. Master’s thesis, Suleyman Demirel University, Graduate School of Natural and Applied Sciences, Isparta, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=AWaLG6v1B2Wm2E0fJHwS3A&no=wINiJ-p6GWAWeaSvgWlfUQ (In Turkish).

Kariz, M.; Kuzman, M.K.; Sernek, M.; Hughes, M.; Rautkari, L.; Kamke, F.A.; Kutnar, A. 2017. Influence of temperature of thermal treatment on surface densification of spruce. Eur J Wood Prod 75(1): 113–123. https://doi.org/10.1007/s00107-016-1052-z

Kilic, M.; Hiziroglu, S.; Burdurlu, E. 2006. Effect of machining on surface roughness of wood. Build Environ 41(8): 1074–1078. https://doi.org/10.1016/j.buildenv.2005.05.008

Kminiak, R.; Gaff, M. 2015. Roughness of surface created by transversal sawing of spruce, beech, and oak wood. BioResources 10(2): 2873-2887. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/BioRes_10_2_2873_Kminiak_G_Surface_Unevenness_Created_Transversal_Sawing_6794.pdf

Koc, K.H.; Erdinler, E.S.; Hazir, E.; Oztürk, E. 2017. Effect of CNC application parameters on wooden surface quality. Measurement 107: 12-18. https://doi.org/10.1016/j.measurement.2017.05.001

Korkut, S.; Kocaefe, D. 2009. Effect of heat treatment on wood properties. Düzce University J For 5(2): 11–34. https://dergipark.org.tr/tr/pub/duzceod/issue/4827/291144

Kutnar, A.; Šernek, M. 2007. Densification of wood. Gozdarstva in Lesarstva 82: 53–62. http://eprints.gozdis.si/198/1/zbgl-82-6.pdf

Laine, K.; Antikainen, T.; Rautkari, L.; Hughes, M. 2013. Analysing density profile characteristics of surface densified solid wood using computational approach. Int Wood Prod J 4(3): 144–149. https://doi.org/10.1179/2042645313Y.0000000031

Lamason, C.; Gong, M. 2007. Optimization of pressing parameters for mechanically surface-densified aspen. Forest Prod J 57(10): 64–68.

Laskowska, A. 2017. The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth). BioResources 12(3): 6011–6023. https://doi.org/10.15376/biores.12.3.6011-6023

Laskowska, A. 2020. The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas-Cienc Tecnol 22(1): 55-68. https://doi.org/10.4067/S0718-221X2020005000106

Lin, R.J.T.; Van Houts, J.; Bhattacharyya, D. 2006. Machinability investigation of medium-density fibreboard. Holzforschung 60(1): 71–77. https://doi.org/10.1515/HF.2006.013

Lykidis, C.; Moya, R.; Tenorio, C. 2020. The effect of melamine formaldehyde impregnation and hot-pressing parameters on the density profile of densified poplar wood. Eur J Wood Prod 78(3): 433–440. https://doi.org/10.1007/s00107-020-01515-y

Malkocoglu, A. 2007. Machining properties and surface roughness of various wood species planed in different conditions. Build Environ 42(7): 2562–2567. https://doi.org/10.1016/j.buildenv.2006.08.028

Malkocoglu, A.; Ozdemir, T. 2006. The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey. J Mater Process Technol 173(3): 315–320. https://doi.org/10.1016/j.jmatprotec.2005.09.031

Mania, P.; Wróblewski, M.; Wójciak, A.; Roszyk, E.; Moliński, W. 2020. Hardness of densified wood in relation to changed chemical composition. Forests 11(5): 506. https://doi.org/10.3390/f11050506

Nasir, V.; Cool, J. 2019. Optimal power consumption and surface quality in the circular sawing process of Douglas-fir wood. Eur J Wood Prod 77: 609–617. https://doi.org/10.1007/s00107-019-01412-z

Nasir, V.; Cool, J. 2020. A review on wood machining: characterization, optimization, and monitoring of the sawing process. Wood Mater Sci Eng 15(1): 1-16, https://doi.org/10.1080/17480272.2018.1465465

Nasir, V.; Mohammadpanah, A.; Cool, J. 2020. The effect of rotation speed on the power consumption and cutting accuracy of guided circular saw: Experimental measurement and analysis of saw critical and flutter speeds. Wood Mater Sci Eng 15(3): 140-146. https://doi.org/ 10.1080/17480272.2018.1508167

Ozdemir, S. 2020. The application of thermo-mechanical densification in production of curved laminated veneer lumber and the effect on mechanical properties. Ph.D. Thesis, Bartın University, Graduate School of Natural and Applied Sciences, Bartin, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=ZT86GirGSYZCJ_4lrLvmQA&no=Q-IVEf1bBl7juR4DAtZnUA (In Turkish).

Pelit, H. 2014. The effects of densification and heat treatment on finishing process with some technological properties of Eastern beech and scots pine. Ph.D. Thesis, Gazi University, Graduate School of Natural and Applied Sciences, Ankara, Turkey. (In Turkish).

Pelit, H.; Budakci, M.; Sonmez, A. 2018. Density and some mechanical properties of densified and heat post-treated Uludağ fir, linden and black poplar woods. Eur J Wood Prod 76(1): 79–87. https://doi.org/10.1007/s00107-017-1182-y

Pelit, H.; Budakci, M.; Sonmez, A.; Burdurlu, E. 2015a. Surface roughness and brightness of scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment. J Wood Sci 61(6): 586–594. https://doi.org/10.1007/s10086-015-1506-7

Pelit, H.; Sonmez, A.; Budakci, M. 2015b. Effects of thermomechanical densification and heat treatment on density and Brinell hardness of scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources 10(2): 3097–3111. https://doi.org/10.15376/biores.10.2.3097-3111

Pelit, H.; Sonmez, A. 2015. The effect of thermo-mechanical densification and heat treatment on some physical properties of Eastern beech (Fagus orientalis L.) wood. Duzce University J Sci Technol 3(1): 1–14. https://dergipark.org.tr/en/pub/dubited/issue/4809/66235

Pelit, H.; Sonmez, A.; Budakci, M. 2014. Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of scots pine (Pinus sylvestris L.). BioResources 9(3): 4552-4567. https://doi.org/10.15376/biores.9.3.4552-4567

Pertuzzatti, A.; Missio, A.L.; Cademartori, P.H.G.; Santini, E.J.; Haselein, C.R.; Berger, C.; Gatto, A.D.; Tondi, G. (2018). Effect of process parameters in the thermomechanical densification of Pinus elliottii and Eucalyptus grandis fast-growing wood. BioResources 13(1): 1576-1590. https://doi.org/10.15376/biores.13.1.1576-1590

Pinkowski, G.; Szymański, W.; Krauss, A.; Stefanowski, S. 2018. Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources 13(3): 6952-6962. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_3_6952_Pinkowski_Sharpness_Angle_Feeding_Speed

Rautkari, L. 2012. Surface modification of solid wood using different techniques. PhD Thesis, Aalto University, Department of Forest Products Technology, Finland. https://aaltodoc.aalto.fi/handle/123456789/5259

Rautkari, L.; Laine, K.; Kutnar, A.; Medved, S.; Hughes, M. 2013. Hardness and density profile of surface densified and thermally modified Scots pine in relation to degree of densification. J Mater Sci 48(6): 2370–2375. https://doi.org/10.1007/s10853-012-7019-5

Rautkari, L.; Properzi, M.; Pichelin, F.; Hughes, M. 2009. Surface modification of wood using friction. Wood Sci Technol 43(3–4): 291–299. https://doi.org/10.1007/s00226-008-0227-0.

Rautkari, L.; Properzi, M.; Pichelin, F.; Hughes, M. 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci Technol 44(4): 679–691. https://doi.org/10.1007/s00226-009-0291-0.

Senol, S. 2018. Determination of physical, mechanical and technological properties of some wood materials treated with thermo-vibro-mechanical (TVM) process. PhD. Thesis, Duzce University, Graduate School of Natural and Applied Sciences, Duzce, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=0FSI2yI2Beia1NX4IETMTg&no=Asx4VFAeQLz3GCIEnmN-UA (In Turkish).

Senol, S.; Budakci, M. 2016. Mechanical wood modification methods. Mugla J Sci Technol 2(2): 53–53. https://doi.org/10.22531/muglajsci.283619.

Senol, S.; Budakci, M. 2019. Effect of Thermo-Vibro-Mechanic® densification process on the gloss and hardness values of some wood materials. BioResources 14(4): 9611–9627. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_4_9611_Senol_Thermo_Vibro_Mechanic_Densification

Senol, S.; Budakci, M.; Korkmaz, M. 2017. The effect of Thermo-Vibro-Mechanical (TVM) densification process on density and abrasion resistance of some wood materials. J Adv Technol Sci 6(3): 263–275. https://dergipark.org.tr/tr/download/article-file/378796

Skyba, O.; Schwarze, F.W.M.R.; Niemz, P. 2009. Physical and mechanical properties of Thermo-hygromechanically (THM) - densified wood. Wood Res 54(2): 1–18. http://www.woodresearch.sk/wr/200902/01.pdf

Sofuoglu, S. D.; Kurtoglu, A. 2014. Some machining properties of 4 wood species grown in Turkey. Turkish J Agric For 38(3): 420–427. https://doi.org/10.3906/tar-1304-124

Sofuoglu, S.D. 2008. Effects of wood machining properties of some native species on surface quality. Ph.D. Thesis, Istanbul University, Graduate School of Natural and Applied Sciences, Istanbul. Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=gUTanfZOv2ijZHLGLmuEdA&no=-OB6ZVFXmt2TD8wlH4e8vw (In Turkish).

Sofuoglu, S.D. 2015. Using artificial neural networks to model the surface roughness of massive wooden edge-glued panels made of scotch pine (Pinus sylvestris L.) in a Machining Process with Computer Numerical Control. BioResources 10(4): 6797–6808. https://doi.org/10.15376/biores.10.4.6797-6808

Sofuoglu, S.D.; Tosun, M.; Atilgan, A. 2022. Determination of the machining characteristics of Uludağ fir (Abies nordmanniana Mattf.) densified by compressing, Wood Mater Sci Eng https://doi.org/10.1080/17480272.2022.2080586

Sutcu, A.; Karagoz, U. 2012. Effect of machining parameters on surface quality after face milling of MDF. Wood Res 57(2): 231–240. http://www.woodresearch.sk/wr/201202/05.pdf

Sutcu, A.; Karagoz, U. 2013. The influence of process parameters on the surface roughness in aesthetic machining of wooden edge-glued panels (EGPs). BioResources 8(4): 5435–5448. https://doi.org/10.15376/biores.8.4.5435-5448

Tenorio, C.; Moya, R.; Navarro-Mora, A. 2021. Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas-Cienc Tecnol 23: 1–12. https://doi.org/10.4067/s0718-221x2021000100416

Ulker, O.; Imirzi, O.; Burdurlu, E. 2012. The effect of densificatoin temperature on some physical ans mechanical properties of scots pine (Pinus sylvestris L.). BioResources 7(4): 5581–5592. https://doi.org/10.15376/biores.7.4.5581-5592

Wehsener, J.; Brischke, C.; Meyer-Veltrup, L.; Hartig, J.; Haller, P. 2018. Physical, mechanical and biological properties of thermo-mechanically densified and thermally modified timber using the Vacu3-process. Eur J Wood Prod 76(3): 809–821. https://doi.org/10.1007/s00107-017-1278-4.

Zhong, Z.W.; Hiziroglu, S.; Chan, C.T.M. 2013. Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement 46(4): 1482–1487. https://doi.org/10.1016/j.measurement.2012.11.041

Downloads

Published

2023-02-17

How to Cite

Tosun, M. ., & Sofuoglu, S. D. . (2023). Determination of processing characteristics of wood materials densified by compressing. Maderas-Cienc Tecnol, 25, 1–16. https://doi.org/10.4067/s0718-221x2023000100427

Issue

Section

Article