The effect of sanding on the wettability and surface quality of imbuia, red oak and pine wood veneers

Authors

  • Lincoln Audrew Cordeiro
  • Bruno de Miranda
  • Mayara Elita Carneiro
  • André Luiz Missio
  • Umberto Klock
  • Pedro Henrique Gonzalez de Cademartori

DOI:

https://doi.org/10.4067/s0718-221x2023000100421

Keywords:

Contact angle, hydrophobicity, hydrophilicity, sanding, wood surface

Abstract

The finishing quality of wood products depends on the material's surface and its intrinsic properties. Dynamic wettability is a simple and efficient way to understand the behavior of materials related to solid-liquid interactions according to theoretical and practical perspectives. Thus, we sought to investigate the wettability of imbuia (Ocotea spp.), red oak (Quercus spp.), and pine (Pinus elliottii) woods and its effects before and after sanding. Through the sessile drop technique, we evaluated contact angle and work of adhesion. Sanding changed the samples’ surface quality due to the decrease in contact angle and the increase in the work of adhesion. In addition, the droplet spreading and adsorption observed on the surface of the woods are an indicator of wettability. Pine and red oak had their dynamic contact angle reduced by up to 43 %. However, imbuia was less susceptible to the effects of sanding, since it was found to be a more hydrophobic species; thus, this wood has a more stable surface in terms of dynamic wettability. This may be a result of the effect of low molecular weight compounds on the surface of imbuia wood. The preparation of the wood surface depends on a synergy between the finishing processes and the chemical composition of the surface. Therefore, the results found can indicate which coatings are more suited to these woods.

Downloads

Download data is not yet available.

References

Agrawal, G.; Negi, Y.S.; Pradhan, S.; Dash, M.; Samal, S.K. 2017. 3. Wettability and contact angle of polymeric biomaterials. In: Characterization of Polymeric Biomaterials. Tanzi, M.C.; Farè, S. (Eds.). Woodhead Publishing - Elsevier Ltd, Cambridge, England. https://doi.org/10.1016/B978-0-08-100737-2.00003-0

Amorim, M.R.S.; Ribeiro, P.G.; Martins, S.A.; Del Menezzi, C.H.S.; Souza, M.R. de. 2013. Surface Wettability and Roughness of 11 Amazonian Tropical Hardwoods. FLORAM 20(1): 99-109. https://doi.org/10.4322/floram.2012.069

Aydin, I.; Demirkir, C. 2010. Activation of Spruce Wood Surfaces by Plasma Treatment After Long Terms of Natural Surface Inactivation. Plasma Chem Plasma Process 30(5): 697-706. https://doi.org/10.1007/s11090-010-9244-5

Cademartori, P.H.G. de; Nisgoski, S.; Magalhães, W.L.E.; Muniz, G.I.B. de. 2016. Surface wettability of Brazilian tropical wood flooring treated with He plasma. Maderas- Cienc Tecnol 18(4): 715-722. https://doi.org/10.4067/S0718-221X2016005000062

Cademartori, P.H.G. de; Stafford, L.; Blanchet, P.; Magalhães, W.L.E.; Muniz, G.I.B. de. 2017. Enhancing the water repellency of wood surfaces by atmospheric pressure cold plasma deposition of fluorocarbon film. RSC Adv 7(46): 29159-29169. https://doi.org/10.1039/C7RA03334F

Cassie, A.B.D.; Baxter, S. 1944. Wettability of porous surfaces. Trans Faraday Soc 40: 546-551. https://doi.org/10.1039/TF9444000546

Christiansen, A.W. 1990. How Overdrying Wood Reduces Its Bonding to Phenol-Formaldehyde Adhesives: A Critical Review of the Literature. Part I. Physical Responses. Wood Fiber Sci 22(4): 441-459. https://wfs.swst.org/index.php/wfs/article/view/2105

Christiansen, A.W. 1991. How Overdrying Wood Reduces Its Bonding to Phenol-Formaldehyde Adhesives: A Critical Review of the Literature. Part II. Chemical Reactions. Wood Fiber Sci 23(1): 69-84. https://wfs.swst.org/index.php/wfs/article/view/2145

Chu, D.; Xue, L.; Zhang, Y.; Kang, L.; Mu, J. 2016. Surface Characteristics of Poplar Wood with High-Temperature Heat Treatment: Wettability and Surface Brittleness. BioResources 11(3): 6948-6967. https://bioresources.cnr.ncsu.edu/resources/surface-characteristics-of-poplar-wood-with-high-temperature-heat-treatment-wettability-and-surface-brittleness/

Darmawan, W.; Nandika, D.; Noviyanti, E.; Alipraja, I.; Lumongga, D.; Gardner, D.; Gérardin, P. 2018. Wettability and bonding quality of exterior coatings on jabon and sengon wood surfaces. J Coat Technol Res 15(1): 95-104. https://doi.org/10.1007/s11998-017-9954-1

Fang, Q.; Cui, H.W.; Du, G.B. 2016. Surface wettability, surface free energy, and surface adhesion of microwave plasma-treated Pinus yunnanensis wood. Wood Sci Technol 50(2): 285-296. https://doi.org/10.1007/s00226-015-0793-x

Fonte, A.P.N. da; Carneiro, M.E.B.; Muñiz, G.I.B. de. 2019. Penetration and wettability of varnish in the wood of Cryptomeria japonica. Floresta 49(1): 117-124. https://doi.org/10.5380/rf.v49i1.57693

Forbes, C. 1998. Wood Surface Inactivation and Adhesive Bonding. Wood Products Notes. Wood Products Extension. NC State Extension Publications: Numbered Publications, Facsheets, Hard Copy, Documents, Authoritative Sources and more. NC State Extension Publications. https://content.ces.ncsu.edu/wood-surface-inactivation-and-adhesive-bonding

Gardner, D.J.;Generalla, N.C.; Gunnells, D.W.; Wolcott, M.P. 1991. Dynamic Wettability of Wood. Langmuir 7(11): 2498-2502. https://doi.org/10.1021/la00059a017

Ghofrani, M.; Mirkhandouzi, F.Z.; Ashori, A. 2016. Effects of extractives removal on the performance of clear varnish coatings on boards. J Compos Mater 50(21): 3019-3024. https://doi.org/10.1177/0021998315615205

Jankowska, A.; Zbieć, M.; Kozakiewicz, P.; Koczan, G.; Oleńska, S.; Beer, P. 2018. The wettability and surface free energy of sawn, sliced and sanded european oak wood. Maderas-Cienc Tecnol 20(3): 443-454. https://doi.org/10.4067/S0718-221X2018005031401

Lopes, J. de O.; Garcia, R.A.; Nascimento, A.M. do. 2018. Wettability of the surface of heat-treated juvenile teak wood assessed by drop shape analyzer. Maderas-Cienc Tecnol 20(2): 249-256. https://doi.org/10.4067/S0718-221X2018005002801

Mantanis, G.I.; Young, R.A. 1997. Wetting of wood. Wood Sci Technol 31(5): 339-353. https://doi.org/10.1007/BF01159153

Nussbaum, R.M. 1996. The critical time limit to avoid natural inactivation of spruce surfaces (Picea abies) intended for painting or gluing. Eur J Wood Prod 54(1). https://doi.org/10.1007/BF03034905

Papp, E.A.; Csiha, C. 2017. Contact angle as function of surface roughness of different wood species. Surf Interfaces 8: 54-59. https://doi.org/10.1016/j.surfin.2017.04.009

Peng, X.; Zhang, Z. 2019. Surface properties of different natural precious decorative veneers by plasma modification. Eur J Wood Prod 77(1): 125-137. https://doi.org/10.1007/s00107-018-1355-3

Pereira, K. do N.; Gonçalez, J.C.; Raabe, J.; Costa, A.F. da. 2017. Surface quality of the Ficus sp. wood veneers submitted to finishing treatments. Madera y Bosques 23(2): 181-191. https://doi.org/10.21829/myb.2017.2321224

Piao, C.; Winandy, J.E.; Shupe, T.F. 2010. From Hydrophilicity to Hydrophobicity: A Critical Review: Part I. Wettability and Surface Behavior. Wood Fiber Sci 42(4): 490-510. https://wfs.swst.org/index.php/wfs/article/view/2144

Rolleri, A.S.; Burgos, F.; Aguilera, A. 2016. Surface Roughness and Wettability Variation: The effect of Cutting Distance during Milling of Pinus radiata Wood. Drv Ind 67(3): 223-228. https://doi.org/10.5552/drind.2016.1531

Rowell, R.M.; Pettersen, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. 2005. 3. Cell Wall Chemistry. In: Handbook of wood chemistry and wood composites. Rowell, R.M. (Ed.). Taylor & Francis, Boca Raton, United States of America. http://doi.org/10.1201/9780203492437.

Sacilotto, D.G.; Ferreira, J.Z. 2016. Influência da modificação superficial sobre a resistência à corrosão do aço inoxidável AISI 204 com revestimento hidrofóbico. Tecnol Metal Mater Min 13(2): 201-208. https://doi.org/10.4322/2176-1523.0996 (In Portuguese)

Santos, S.N.C. dos; Goncalves, D. 2016. Cambios en la mojabilidad en superficies de maderas tratadas térmicamente: Angulo de contacto y energía libre superficial. Maderas-Cienc Tecnol 18(2): 383-394. https://doi.org/10.4067/S0718-221X2016005000035 (In Spanish)

Santos, W.A.; Garcia, R.A. 2019. Efeito da densidade e da cor na molhabilidade da superfície de madeiras de eucalipto. Sci For 47(122): 245-255. https://doi.org/10.18671/scifor.v47n122.07 (In Portuguese)

Sarkar, A.; Kietzig, A.M. 2013. General equation of wettability: A tool to calculate the contact angle for a rough surface. Chem Phys Lett 574: 106-111. https://doi.org/10.1016/j.cplett.2013.04.055

Siebra, M.B.D.S.; Fernandes, N.C.D.L.; Ribeiro, P.G.; Lobão, M.S. 2020. Molhabilidade de duas madeiras amazônicas tratadas com produtos de acabamento. Sci Nat 2(1): 68-71. https://periodicos.ufac.br/index.php/SciNat/article/view/3658 (In Portuguese)

Sinderski, L.G.Z. 2020. Ângulo de Contato e Rugosidade de Madeiras, uma breve revisão. Braz J Wood Sci 11(1): 1-11. https://doi.org/10.12953/2177-6830/rcm.v11n1p1-11 (In Portuguese)

Technical Association of the Pulp and Paper Industry. 2017. Solvent extractives of wood and pulp. T204 cm-17. TAPPI. Peachtree Corners, GA, USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T204.aspx

Technical Association of the Pulp and Paper Industry. 2008. Water solubility of wood and pulp. T207 cm-08: TAPPI. Peachtree Corners, GA, USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T207.aspx

Tshabalala, M.A. 2005. 8. Surface Characterization. In Handbook of wood chemistry and wood composites. Rowel R.M. (Ed.). Taylor & Francis, Boca Raton, United States of America. http://doi.org/10.1201/9780203492437

Wang, X.; Wang, F.; Yu, Z.; Zhang, Y.; Qi, C.; Du, L. 2017. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J Wood Sci 63: 271-280. https://doi.org/10.1007/s10086-017-1621-8

Wastowski, A.D. 2018. Química da Madeira. Editora Interciência, Rio de Janeiro, Brazil. http://www.editorainterciencia.com.br/index.asp?pg=prodDetalhado.asp&idprod=483&token= (In Portuguese)

Wei, S.; Shi, J.; Gu, J.; Wang, D.; Zhang, Y. 2012. Dynamic wettability of wood surface modified by acidic dyestuff and fixing agent. Appl Surf Sci 258(6): 1995-1999. https://doi.org/10.1016/j.apsusc.2011.05.072

Wenzel, R.N. 1936. Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8): 988-994. https://doi.org/10.1021/ie50320a024

Xu, X. 2016. Modified Wenzel and Cassie equations for wetting on rough surfaces. SIAM J Appl Math 76(6): 2353-2374. https://doi.org/10.1137/15M1038451

Young, T. 1804. An Essay on the Cohesion of Fluids. Phil Trans R Soc 95: 65-87. https://doi.org/10.1098/rstl.1805.0005

Yuan, Y.; Lee, T.R. 2013. 1. Contact Angle and Wetting Properties. In Surface Science Techniques. Bracco, G.; Holst, B. (Eds.). Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-34243-1_1

Downloads

Published

2023-02-27

How to Cite

Cordeiro, L. A. ., de Miranda, B. ., Carneiro, M. E. ., Missio, A. L. ., Klock, U. ., & Gonzalez de Cademartori, P. H. (2023). The effect of sanding on the wettability and surface quality of imbuia, red oak and pine wood veneers. Maderas. Ciencia Y Tecnología, 25, 1–10. https://doi.org/10.4067/s0718-221x2023000100421

Issue

Section

Article

Most read articles by the same author(s)