Evaluation of the interface of eucalyptus specimens welded by rotary friction

Authors

  • Ana Carolina Costa Viana
  • Poliana Dias de Moraes
  • Walter Lindolfo Weingaertner

DOI:

https://doi.org/10.4067/s0718-221x2023000100426

Keywords:

Dowel connections, eucalypts wood, rotary friction, thermochemical changes, welding of wood

Abstract

Rotary friction welding produces joints by inserting wood dowels, with a specific rotation and feed rate, into pre-drilled holes made in wood substrates. Studies on the welding of fast-growing eucalypts from Brazilian planted forests are recent. Therefore, this research aimed to evaluate the macro and microstructural and thermochemical changes at the dowel/substrate interface of eucalypts welded joints from Brazilian planted forests and to determine the mechanical strength of two-piece eucalypts welded joints. Specimens formed by eucalypts dowels and substrates were produced. Subsequently, visual evaluation and scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric, differential scanning calorimetry and tensile tests were performed. The results reveal that the rotary friction welding parameters adopted contribute to the densification of the welded interface and the formation of a structure responsible for joining the dowel and the substrate, providing mechanical strength to the joint. The cellulose crystallinity index and the apparent crystallite size of the eucalypts welded sample increase due to thermal degradation of amorphous components. The rupture of the welded joints is ductile and their average strength is 2,1 MPa. Welded joints of fast-growing eucalypts, from Brazilian planted forests, are suitable when the rotary friction welding parameters are similar to those used for eucalypts woods from Australian forests.

Downloads

Download data is not yet available.

References

Associação Brasileira de Normas Técnicas. ABNT. 1997. Projeto de estruturas de madeira. NBR 7190. ABNT, Rio de Janeiro, Brazil.

Amirou, S.; Pizzi, A.; Delmotte, L. 2019. Investigations of mechanical properties and chemical. J Adhes Sci Technol 34(1): 13-24. https://doi.org/10.1080/01694243.2019.1659569

American Society for Testing and Materials. ASTM. 2021. Standard test methods for small clear specimens of timbers. ASTM D143. ASTM, West Conshohocken, United States.

Ball, R.; McIntosh, A.C.; Brindley, J. 2004. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust Theor Model 8(2): 281-291. https://doi.org/10.1088/1364-7830/8/2/005

Belleville, B. 2012. Soudage de bois feuillus par friction rotationnelle. Ph.D. Thesis, University of Laval. Québec, Canada. (In French)

Belleville, B.; Stevanovic, T.; Pizzi, A.; Cloutier, A.; Blanchet, P. 2013. Determination of optimal wood-dowel welding parameters for two North American hardwood species. J Adhes Sci Technol 27(5-6): 566-576. https://doi.org/10.1080/01694243.2012.687596

Belleville, B.; Ozarska, B.; Pizzi, A. 2016. Assessing the potential of wood welding for Australian eucalypts and tropical species. Eur J Wood Prod 74: 753-757. https://doi.org/10.1007/s00107-016-1067-5

Belleville, B.; Koumba-Yoya, G.; Stevanovic, T. 2018. Effect of wood welding process on chemical constituents of Australian Eucalyptus. J Wood Chem Technol 39(1): 43-56. https://doi.org/10.1080/02773813.2018.1494745

Crespo, Y.A.; Naranjo, R.A.; Burgos, J.C.V. 2015. Thermogravimetric analysis of thermal and kinetic behavior of Acacia mangium wood. Wood Fiber Sci 47(4): 327-335. https://wfs.swst.org/index.php/wfs/article/view/2363

Delmotte, L.; Ganne-Chedeville, C.; Leban, J.M.; Pizzi, A.; Pichelin, F. 2008. CP-MAS 13C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding. Polym Degrad Stab 93(2): 406-412. https://doi.org/10.1016/j.polymdegradstab.2007.11.020

Dias Jr., A.F.; Oliveira de, R.N.; Deglise, X.; Souza de, N.D.; Brito, J.O. 2019. Infrared spectroscopy analysis on charcoal generated by the pyrolysis of Corymbia citriodora wood. Revista Matéria 24(3). https://doi.org/10.1590/S1517-707620190003.0700

Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. http://doi.org/10.15376/biores.4.1.370-404

Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc Tecnol 15(2): 245-258. http://dx.doi.org/10.4067/S0718-221X2013005000020

Faix, O. 1991. Condensation indices of lignins determined by FTIR-spectroscopy. Holz Roh Werkst 49(9): 356.

Gfeller, B.; Zanetti, M.; Properzi, M.; Pizzi, A.; Pichelin, F.; Lehmann, M.; Delmotte, L. 2003. Wood bonding by vibrational welding. J Adhes Sci Technol 17(11): 1573-1589. https://doi.org/10.1163/156856103769207419

Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. 2016. The Cambridge structural database. Acta Crystallogr 171–179. https://doi.org/10.1107/S2052520616003954

Hongda, Y.; Ning, W.; Xinmiao, M.; Xudong, Z.; Ying, G. 2022. Study on process parameters and mechanism of bamboo dowel rotation welding. J Beijing For Univ 44(2): 141-150. 10.12171/j.1000-1522.20210288 (In Chinese)

Indústria Brasileira de Árvores. IBA. 2021. IBÁ Annual Report. IBÁ, São Paulo, Brasil. https://www.iba.org/datafiles/publicacoes/relatorios/relatorioiba2021-compactado.pdf

Instituto de Pesquisas Tecnológicas. IPT. 2022. Informações sobre madeiras. IPT, São Paulo, Brasil. https://www.ipt.br/informacoes_madeiras/13-eucalipto_grandis.htm (In Portuguese)

ISO. 2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens. ISO 13061–17. International Organization for Standardization, Geneva, Switzerland.

Kanazawa, F.; Pizzi, A.; Properzi, M.; Delmotte, L.; Pichelin, F. 2005. Parameters influencing wood-dowel welding by high-speed rotation. J Adhes Sci Technol 19(12): 1025-1038. https://doi.org/10.1163/156856105774382444

Khalimov, E.; Shteba, T.; Yuryev, Y. 2019. Some peculiarities of burnt birch wood pyrolysis. IOP Conf Ser: Earth Environ Sci 316. 012019. http://doi.org/10.1088/1755-1315/316/1/012019

Kubovský, I.; Kačíková, D.; Kačík, F. 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12(2): 485. https://doi.org/10.3390/polym12020485

Leban, J.M.; Pizzi, A.; Wieland, S.; Zanetti, M.; Properzi, M.; Pichelin, F. 2004. X-ray microdensitometry analysis of vibration-welded wood. J Adhes Sci Technol 18(6): 673-685. https://doi.org/10.1163/156856104839310

Leban, J.M.; Pizzi, A.; Properzi, M.; Pichelin, F.; Gelhaye, P.; Rose, C. 2005. Wood welding: a challenging alternative to conventional wood gluing. Scand J For Res 20(6): 534-538. https://doi.org/10.1080/02827580500432305

Lee, H-L.; George, C.C.; Rowell, R.M. 2003. Thermal properties of wood reacted with a phosphorus pentoxide–amine system. J Appl Polym Sci 91(4): 2465-2481. https://doi.org/10.1002/app.13408

Li, S.; Zhang, H.; Shu, B.; Cheng, L.; Ju, Z.; Lu, X. 2021. Study on the bonding performance of the moso bamboo dowel welded to a poplar substrate joint by high-speed rotation. J Renew Mater 9(7): 1225-1237. http://dx.doi.org/10.32604/jrm.2021.014364

Magalhães, W.L.E.; Mattos, B.D.; Missio, A.L. 2012. Field testing of CCA-treated Brazilian spotted gum. Int Biodeter Biodegr 74: 124-128. http://doi.org/10.1016/j.ibiod.2012.05.024

Mansouri, H.R.; Pizzi, A.; Leban, J.M.; Delmotte, L.; Lindgren, O.; Vaziri, M. 2011. Causes for the improved water resistance in pine wood linear welded joints. J Adhes Sci Technol 25(16): 1987-1995. https://doi.org/10.1163/016942410X544794

Meier, E. 2021. Loblolly Pine. The wood database. https://www.wood-database.com/loblolly-pine/.

Navi, P.; Sandberg, D. 2011. Thermo-hydro-mechanical wood processing. EPFL Press, New York, USA. https://doi.org/10.1201/b10143

Omrani, P.; Masson, E.; Pizzi, A.; Mansouri, H.R. 2008. Emission of gases and degradation volatiles from polymeric wood constituents in friction welding of wood dowels. Polym Degrad Stab 93: 794-799. https://doi.org/10.1016/j.polymdegradstab.2008.01.017

Özgenc ̧, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. 2017. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim Acta A 171: 395-400. https://doi.org/10.1016/j.saa.2016.08.026

Peña, M.I.P. 2018. Caractéristiques chimiques et anatomiques de la ligne de soudure du bois. Ph.D. Thesis, Lorraine University. Nancy, France. (In French)

Pereira, M.P.C.F 2017. Decomposição térmica e biológica de cavacos de Eucalyptus urophylla. Master, Universidade Federal de Viçosa, Viçosa, Brazil. (In Portuguese) https://www.locus.ufv.br/handle/123456789/11564

Pizzi, A.; Leban, J.M.; Kanazawa, F.; Properzi, M.; Pichelin, F. 2004. Wood dowel bonding by high-speed rotation welding. J Adhes Sci Technol 18(11): 1263-1278. https://doi.org/10.1163/1568561041588192

Pizzi, A.; Despres, A.; Mansouri, H.R.; Leban, J.M.; Rigolet, S. 2006. Wood joints by through-dowel rotation welding- microstructure, 13C-NMR and water resistance. J Adhes Sci Technol 20(5): 427-436. http:// doi.org/10.1163/156856106777144327

Pizzi, A. 2010. Wood joints adhesion and performance in mechanical friction welding of wood without adhesives. Chapter 9. 8p. In: Recent advances in adhesion science and technology. Gutowski, W.; Dodiuk, H. (Eds.). CRC Press, Boca Raton, Florida, USA. https://doi.org/10.1201/b16347

Poletto, M.; Zattera, A.J.; Forte, M.M.C.; Santana, R.M.C. 2012a. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour Technol 109: 148-153. https://doi.org/10.1016/j.biortech.2011.11.122

Poletto, M.; Zattera, A.J.; Santana, R.M.C. 2012b. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:336-343. https://doi.org/10.1002/app.36991

Poletto, M. 2016. Thermal degradation and morphological aspects of four wood species used in lumber industry. Rev Árvore 40(5): 941-948. http:// doi.org/10.1590/0100-67622016000500018

Properzi, M.; Leban, J.M.; Pizzi, A.; Wieland, S.; Pichelin, F.; Lehmann, M. 2005. Influence of grain direction in vibrational wood welding. Holzforschung 59(1): 23-27. http://doi.org/10.1515/HF.2005.004

Rodriguez, G. 2010. Soudage du bois par rotation. M.Sc. Dissertation, University of Laval. Québec, Canada. (In French)

Rowell, R.M. 2005. Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9780203492437

Schneid, E.; Moraes, P.D. 2016. União de peças de madeira por meio da técnica de soldagem por fricção rotacional. In: Proceedings of the XV EBRAMEM – Encontro Brasileiro em Madeiras e em Estruturas de Madeira, Curitiba, Brazil. (In Portuguese)

Segal, L.C.; Creely, J.J.; Martin, A.E.J.; Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10): 786–794. https://doi.org/10.1177/004051755902901003

Slopiecka, K.; Bartocci, P.; Fantozzi, F. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97: 491-497. http://doi.org/10.1016/j.apenergy.2011.12.056

Smid, P. 2003. CNC Programing Handbook. Industrial Press Inc, New York, USA.

Sotayo, A.; Bradley, D.; Bather, M.; Sareh, P.; Oudjene, M.; El-Houjeyri, I.; Harte, A.M.; Mehra, S.; et al. 2020. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Dev Built Environ 1: 100004. https://doi.org/10.1016/j.dibe.2019.100004

Stamm, B.; Windeisen, E.; Natterer, J.; Wegener, G. 2006. Chemical investigations on the thermal behaviour of wood during. Wood Sci Technol 40: 615-627. http://doi.org/10.1007%2Fs00226-006-0097-2

Strezov, V.; Moghtaderi, B.; Lucas, J.A. 2003. Thermal study of decomposition of selected biomass samples. J Therm Anal Calorim 72: 1041-1048. https://doi.org/10.1023/A:1025003306775

Sun, Y.; Royer, M.; Diouf, P.N.; Stevanovic, T. 2010. Chemical changes induced by high-speed rotation welding of wood - application to two Canadian hardwood species. J Adhes Sci Technol 24(8-10): 1383-1400. https://doi.org/10.1163/016942410X500990

Tsujiyama, S.; Miyamori, A. 2000. Assignment of DSC thermograms of wood and its components. Thermochim Acta 351(1-2): 177-181. https://doi.org/10.1016/S0040-6031(00)00429-9

Vaziri, M.; Sandberg, D. 2021. Welding of thermally modified wood and thermal modification of the welded wood: effects on the shear strength under climatic conditions. BioResources 16(2): 3224-3234. https://doi.org/10.15376/biores.16.2.3224-3234

Viana, A.C.C.V.; Moraes, P.D.; Weingaertner, W.L.; Zaniboni, P.N.; Prando, T. 2021. Soldagem das madeiras de pinus e de itaúba por fricção rotativa. Rev Principia 57: 63-75. https://doi.org/10.18265/1517-0306a2021id5809 (In Portuguese).

Viana, A.C.C.V.; Ebersbach, F.G.; Moraes, P.D.; Weingaertner, W.L. 2022a. Influence of pre-drilling hole and feed rate on welded surface strength of pine-itauba joints. Case Stud Constr Mater 17. https://doi.org/10.1016/j.cscm.2022.e01473

Viana, A.C.C.V.; Moraes, P.D.; Weingaertner, W.L. 2022b. União de peças de pinus a partir da soldagem de cavilhas de itaúba por fricção rotativa. In: 4º CBLCMS – Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis, Salvador, Brazil. (In Portuguese)

Wulfhorst, H.; Duwe, A.M.; Merseburg, J.; Tippkötter, N. 2016. Compositional analysis of pretreated (beech) wood using differential scanning calorimetry and multivariate data analysis. Tetrahedron 72(46): 7329-7334. https://doi.org/10.1016/j.tet.2016.04.029

Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13): 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

Yin, W.; Lu, H.; Zheng, Y.; Tian Y. 2022. Tribological properties of the rotary friction welding of wood. Tribol Int 167. https://doi.org/10.1016/j.triboint.2021.107396

Zhang, J.; Gao, Y.; Zhang, J.; Zhu, X. 2018. Influence of pretreated wood dowel with CuCl2 on temperature distribution of wood dowel rotation welding. J Wood Sci 64: 209-219. https://doi.org/10.1007/s10086-017-1693-5

Zhu, X.; Gao, Y.; Yi, S.; Ni, C.; Zhang, J.; Luo, X. 2017a. Mechanics and pyrolysis analyses of rotation welding with pretreated wood dowels. J Wood Sci 63: 216-224. https://doi.org/10.1007/s10086-017-1617-4

Zhu, X.; Yi, S.; Gao, Y.; Zhao Y.; Qiu, Y. 2017b. Mechanical evaluation and XRD/TG investigation on the properties of wooden dowel welding. BioResources 12(2): 3396-3412. 10.15376/BIORES.12.2.3396-3412

Zhu, X.; Xue, Y.; Zhang, S.; Shen, J.; Yi, S.; Gao, Y. 2018. Mechanics and crystallinity/thermogravimetric investigation into the influence of the welding time and CuCl2 on wood dowel welding. BioResources 13(1): 1329-1347. http://doi.org/10.15376/biores.13.1.1329-1347

Zor, M.; Görgün, H.V.; Vaziri, M. 2021. X-ışını Kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) Kullanılarak Kaynaklanan Göknar, Meşe ve Kestane Odununun Yapısal Karakterizasyonu. J Bartin Faculty Forestry 23(3): 871-877. https://doi.org/10.24011/barofd.989542 (In Turkish)

Downloads

Published

2023-03-21

How to Cite

Costa Viana, A. C. ., Dias de Moraes, P. ., & Weingaertner, W. L. . (2023). Evaluation of the interface of eucalyptus specimens welded by rotary friction. Maderas-Cienc Tecnol, 25, 1–18. https://doi.org/10.4067/s0718-221x2023000100426

Issue

Section

Article