Water absorptıon, thıckness swellıng and mechanıcal propertıes of cement bonded wood composıte treated wıth water repellent
Keywords:
Accelerated weathering test, cement-bonded wood composites, composites treatment, mechanical properties, water absorptionAbstract
In this study, the purpose was to improve outdoor performance of cement bonded wood composite due to their biodegradation and sensitivity to moisture especially in warm and humid climates. Cement bonded wood composites were treated with different concentrations (10 %, 25 %, 50 %, 75 % and 100 %) of water repellent. Water repellent used was an organo-silicon based, nano-sized, eco-friendly, water-based agents. Dipping and pressure systems were applied for composite treatment. Water absorption, thickness swelling, accelerated weathering, color changes and mechanical properties after accelerated weathering were determined for treated and untreated cement-bonded composites. Results showed that treatment of composites with water repellent provided a transparent layer on composite surface. Thus, lower water absorption and thickness swelling results in the beginning of immersion in water. Treated and untreated composites were exposed to an accelerated weathering test for 350 h. Their mechanical strength including modulus of rupture, modulus of elasticity and internal bonding properties were decreased after 350 h of weathering. However, overall results after weathering test showed that all panels’ mechanical properties provided minimum modulus of rupture, modulus of elasticity and internal bonding requirements of the EN standards.
Downloads
References
American Society for Testing and Materials. ASTM. 2007. Standard Test Method for Wood Preservatives by Laboratory Soil-Block Cultures. ASTM D 1413. Annual Book of ASTM Standards (Vol. 04.10), ASTM International, West Conshohocken, PA., USA.
Butylina, S.; Hyvärinen, M.; Kärki, T. 2012. A study of surface changes of wood-polypropylene composites as the result of exterior weathering. Polym Degrad Stabil 97(3): 337-345. https://doi.org/10.1016/j.polymdegradstab.2011.12.014
Durmaz, S.; Erdil, Y. Z.; Ozgenc, O. 2022. Accelerated weathering performance of wood‐plastic composites reinforced with carbon and glass fibre‐woven fabrics. Color Technol 138(1): 71-81. https://doi.org/10.1111/cote.12572
European Committee for Standardization. CEN. 1993. Particleboards and fiberboards, determination of swelling in thickness after immersion. EN 317. Brussels, Belgium.
European Committee for Standardization. CEN. 1993. Particleboards and fiberboards, determination of tensile strength perpendicular to plane of the board. EN 319. Brussels, Belgium.
European Committee for Standardization. CEN. 1993. Wood-based panels, determination of modulus of elasticity in bending and bending strength. EN 310. Brussels, Belgium.
European Committee for Standardization. CEN. 2007. Cement-bonded particleboards - Specifications - part 2: requirements for OPC bonded particleboards for use in dry, humid and external conditions. EN 634-2. Brussels, Belgium.
English, B.W.; Falk, R.H. 1996. Factors that affect the application of woodfiber-plastic composites. In Proceedings Forest Products Society. 7293: 189-194.
Frybort, S.; Mauritz, R.; Teischinger, A.; Müller, U. 2008. Cement bonded composites-A mechanical review. Bioresources 3(2): 602-626.
Glohamiyan, H. 2010. The effect of nanoparticles and common furniture paints on water resistance behavior of poplar wood (P. nigra). In Proceedings International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe -Timber Committee. 82: 1-7. Geneva, Switzerland. https://www.swst.org/wp/meetings/AM10/pdfs/WS-82%20Tarmian%20nano%20paper.pdf
Güntekin, E.; Şahin, H.T. 2009. Accelerated weathering performance of cement bonded fiberboard. Sci Res Essays 4(5): 484-492. https://doi.org/10.5897/SRE.9000127
Huang, C.; Cooper, P.A. 2000. Cement-bonded particleboards using CCA-treated wood removed from service. Forest Prod J 50(6): 49-56. https://www.proquest.com/docview/214646959/fulltextPDF/F4AFF65BA39A4877PQ/1?accountid=17248
Hung, C.C.; Su, Y.F.; Hung, H.H. 2017. Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cem Concr Compos 80: 200-209. https://doi.org/10.1016/j.cemconcomp.2017.03.018
International Organization for Standardization. ISO. 1984. Paints and varnishes – colorimetry, ISO 7724-1. Geneva, Switzerland. https://www.iso.org/standard/14557.html
Jorge, F.C.; Pereira, C.; Ferreira, J.M.F. 2004. Wood-cement composites: a review. Holz Roh Werkst 62: 370-377. https://doi.org/10.1007/s00107-004-0501-2
Karade, S.R. 2010. Cement-bonded composites from lingo cellulosic wastes. Constr Build Mater 24(8): 1323-1330. https://doi.org/10.1016/j.conbuildmat.2010.02.003
Kirkpatrick, J.W.; Barnes, H.M. 2006. Biocide treatments for wood composites- a review. In Proceedings The International Research Group on Wood Protection, IRG/WP 06-40323.
Kockal, N.U.; Turker, F. 2007. Effect of environmental conditions on the properties of concretes with different cement types. Constr Build Mater 21(3): 634-645. https://doi.org/10.1016/j.conbuildmat.2005.12.004
Köse, G.; Temiz, A.; Demirel S.; Özkan, O. E. 2014. Using commercial water repellent chemicals on wood protection. In Proceedings The International Research Group on Wood Protection, IRG/WP 14-30656.
Marzuki, A.; Rahim, S.; Hamidah, M.; Ruslan, R.A. 2011. Effects of wood: cement ratio on mechanical and physical properties of three-layered cement-bonded particleboards from Leucaena leucocephala. J Trop For Sci 23(1): 67-72. https://www.jstor.org/stable/pdf/23616881.pdf
Matuana, L.; Jin M.S.; Stark, N.M. 2011. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polym Degrad Stabil 96(1): 97-106. https://doi.org/10.1016/j.polymdegradstab.2010.10.003
Moslemi, A.A. 1999. Emerging technologies in mineral-bonded wood and fiber composites. Adv Perform Mater 6: 161-179. https://doi.org/10.1023/A:1008777812842
Na, B.; Wang, Z.; Wang, H.; Lu, X. 2014. Wood-cement compatibility review. Wood Res 59(5): 813-816. http://www.centrumdp.sk/wr/201405/20140510.pdf
Okino, E.Y.A.; Souza, M.R.; Santana, M.A.E.; Alves, M.V.S.; Sousa M.E.S.; Teixeira, D.E. 2004. Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood. Cement Concr Compos 26: 729-734. https://doi.org/10.1016/S0958-9465(03)00061-1
Page, C.L.; Page, M.M. 2007. Durability of concrete and cement composites. Woodhead Publishing. https://www.sciencedirect.com/book/9781855739406/durability-of-concrete-and-cement-composites#book-description
Papadopoulos, A.N. 2008. Natural durability and performance of hornbeam cement bonded particleboard. Maderas-Cienc Tecnol 10(2): 93-98. http://dx.doi.org/10.4067/S0718-221X2008000200002
Quiroga, A.; Marzocchi, V.; Rintoul, I. 2016. Influence of wood treatments on mechanical properties of wood cement composites and of Populus Euroamericana wood fibers. Compos B Eng 84: 25-32. https://doi.org/10.1016/j.compositesb.2015.08.069
Rowell, R.M. 1984. The chemistry of solid wood-American Chemical Society. ACS Advances in Chemistry Series No. 207, Washington D.C., USA. https://pubs.acs.org/doi/10.1021/ba-1984-0207
Shang, L.; Han, G.; Zhu, F.; Ding, T.S.; Wang; Q, Wu, Q. 2012. High density polyethylene based composites with pressure treated wood fibers. Bioresources 7(4): 5181-5189. https://doi.org/10.15376/biores.7.4.5181-5189
SPSS Statistics. 2020. SPSS software version 21.0. IBM. https://www.ibm.com/support/pages/spss-statistics-210-available-download
Taşcıoğlu, C. 2013. Effects of post treatment with alkaline copper quat and copper azole on the mechanical properties of wood-based composites. Turk J Agric For 37: 505-510. https://doi.org/10.3906/tar-1208-58
Taşcıoğlu, C.; Tufan, M.; Yalçın, M.; Akçay C.; Şen, S. 2016. Determination of biological performance, dimensional stability, mechanical and thermal properties of wood–plastic composites produced from recycled chromated copper arsenate-treated wood. J Thermoplast Compos Mater 29(11): 1461-1478. https://doi.org/10.1177/0892705714565704
Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. 2007. Effect of accelerated weathering on surface chemistry of modified wood. Appl Surf Sci 253(12): 5355-5362. https://doi.org/10.1016/j.apsusc.2006.12.005
Thygesen, A.; Daniel, G.; Lilholt, H.; Thomsen, A.B. 2005. Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J Nat Fibers 2: 19-37. https://doi.org/10.1300/J395v02n04_02
Tittelein, P.; Cloutier, A.; Bissonnette, B. 2012. Design of a low-density wood cement particleboard for interior wall finish. Cement Concr Compos 34: 218-222. https://doi.org/10.1016/j.cemconcomp.2011.09.020
Wei, Y.M.; Tomita, B. 2001. Effects of five additive materials on mechanical and dimensional properties of wood cement-bonded boards. J Wood Sci 47: 437-444. https://doi.org/10.1007/BF00767895
Widyorini, R.; Xu, J.; Watanabe T.; Kawai, S. 2005. Chemical changes in steam pressed kenaf core binderless particleboard. J Wood Sci 51: 26-32. https://doi.org/10.1007/s10086-003-0608-9
Yel, H. 2022. Effect of alkaline pre-treatment and chemical additives on the performance of wood cement panels manufactured from sunflower stems. J Build Eng 52: 104465. https://doi.org/10.1016/j.jobe.2022.104465
Yel, H.; Urun, E. 2022. Performance of cement-bonded wood particleboards produced using fly ash and spruce planer shavings. Maderas-Cienc Tecnol 24(44): 1-10. http://dx.doi.org/10.4067/s0718-221x2022000100444
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.