Cellulose biosaccharification by Irpex lacteus wood decay fungus


  • Sergiy Boiko
  • Maksym Netsvetov
  • Vladimir Radchenko




Cellulose, endo-1,4-β-D-glucanases, exo-1,4-β-D-glucanases, Irpex lacteus, saccharification, thermostability


Enzymatic hydrolysis is an environmentally friendly technology to produce sugars from pretreated biomass. Here, we show that the new Il-11 Irpex lacteus strain can synthesize cellulases in a high quantity. The peptone and filter paper contained in the medium significantly enhanced activity of endo-1,4-β-D-glucanases (app. 50 IU/mL) and total cellulases (app. 9 IU/mL), whereas the medium with peptone and sodium carboxymethyl cellulose stimulated activity of exo-1,4-β-D-glucanases (33 IU/mL). The expression of cellulases reached its maximum within 96–144 hours, and the optimum pH is 3,7. Thermal treatment at 30 °C for 60 minutes activated endo-1,4-β-D-glucanases and total cellulases, while exo-1,4-β-D-glucanases activity was enhanced following 40 °C treatment. In total, the cellulases complex (300 IU/g) saccharified untreated cellulose by 38 % in 48 hours. Concentrate with filter paper activity 100 IU/g is the more balanced enzyme-substrate ratio (2 %), which allows prolonging the saccharification process that will have a positive effect on the cost of the final product.


Download data is not yet available.


Alrumman, S.A. 2016. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47(1): 110119. https://doi.org/10.1016/j.bjm.2015.11.015

Asgher, M.; Ahmad, Z.; Iqbal, H.M.N. 2013. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44: 488–495. https://doi.org/10.1016/j.indcrop.2012.10.005

Balat, M.; Balata, H.; Oz, C. 2008. Progress in bioethanol processing. Prog Energy Combust Sci 34: 551573. https://doi.org/10.1016/j.pecs.2007.11.001

Balsan, G.; Astolfi, V.; Benazzi, T.; Meireles, M.A.; Maugeri, F.; Di Luccio, M.; Dal Prá, V.; Mossi, A.J.; Treichel, H.; Mazutti, M.A. 2012. Characterization of a commercial cellulase for hydrolysis of agroindustrial substrates. Bioprocess Biosyst Eng 35: 1229–1237. https://doi.org/10.1007/s00449-012-0710-8

Bansal, N.; Janveja, C.; Tewari, R.; Soni, R.; Soni, S.K. 2014. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis. Appl Biochem Biotechnol 172(1): 141156. https://doi.org/10.1007/s12010-013-0511-9

Bentil, J.A.; Thygesen, A.; Mensah, M.; Lange, L.; Meyer, A.S. 2018. Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 102(14): 58275839. https://doi.org/10.1007/s00253-018-9072-8

Boiko, S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.:Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biol Szeged 62(1): 5359. https://doi.org/10.14232/abs.2018.1.53-59

Boiko, S.M. 2020. Cellulases of basidiomycetes for the development of bioconversion technologies. Ukr bot j 77(5): 378385. https://doi.org/10.15407/ukrbotj77.05.378

Cragg, S.M.; Beckham, G.T.; Bruce, N.C.; Bugg, T.D.H.; Distel, D.L.; Dupree, P.; Etxabe, A.G.; Goodell, B.S.; et al. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29: 108–119. https://doi.org/10.1016/j.cbpa.2015.10.018

Elisashvili, V.; Kachlishvili, E.; Tsiklauri, N.; Metreveli, E.; Khardziani, T.; Agathos, S.N. 2009. Lignocellulose-degrading enzyme production by white-rot basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25: 331–339. https://doi.org/10.1007/s11274-008-9897-x

Eveleigh, D.E.; Mandels, M.; Andreotti, R.; Roche, C. 2009. Measurement of saccharifying cellulase. Biotechnol Biofuels 2: 21. https://doi.org/10.1186/1754-6834-2-21

Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martnez, A.T.; Otillar, R. et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089): 1715–1719. https://doi.org/10.1126/science.1221748

Fujimoto, Z.; Fujii, Y.; Kaneko, S.; Kobayashi, H.; Mizuno, H. 2004. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J Mol Biol 341(5): 12271235. https://doi.org/10.1016/j.jmb.2004.06.049

Ghose, T.K. 1987. Measurement of cellulase activity. Pure Appl Chem 59(2): 257–268. https://www.degruyter.com/document/doi/10.1351/pac198759020257/html

Hahn-Hagerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Liden, G.; Zacchi, G. 2006. Bio-ethanol — the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12): 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

Juhász, T.; Szengyel, Z.; Szijártó, N.; Réczey, K. 2004. Effect of pH on Cellulase Production of Trichoderma reesei RUT C30. In: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held. Finkelstein, M.; McMillan, J.D.; Davison, B.H.; Evans, B. (Eds.). Humana Press, Totowa, NJ, USA. https://doi.org/10.1007/978-1-59259-837-3_18

Kapoor, M.; Raj, T.; Vijayaraj, M.; Chopra, A.; Gupta, R.P.; Tuli, D.K.; Kumar, R. 2015. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr Polym 124: 265–273. https://doi.org/10.1016/j.carbpol.2015.02.044

Kumar, S.; Sharma, H.K.; Sarkar, B.C. 2011. Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20(5): 12891298. https://doi.org/10.1007/s10068-011-0178-3

Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3): 506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002

Lee, H.; Lee, Y.M.; Heo, Y.M.; Lee, H.; Hong, J.H.; Jang, S.; Min, M.; Lee, J.; Kim, J.S.; Kim, G.H.; Kim, J.J. 2015. Optimization of endoglucanase production by Trichoderma harzianum KUC1716 and enzymatic hydrolysis of lignocellulosic biomass. BioResources 10(4): 7466–7476. https://doi.org/10.15376/biores.10.4.7466-7476

Mandels, M.; Sternberg, D. 1976. Recent advances in cellulase technology. J Ferment Technol 54(4): 267–286. https://www.osti.gov/etdeweb/biblio/5525985

Manchenko, G.P. 2003. Handbook of Detection of Enzymes on Electrophoretic Gels, CRC Press. https://doi.org/10.1201/9781420040531

Menetrez, M.Y. 2014. Meeting the U.S. renewable fuel standard: A comparison of biofuel pathways. Biofuel Res J 1(4): 110122. https://doi.org/10.18331/BRJ2015.1.4.3

Metreveli, E.; Kachlishvili, E.; Singer, S.W.; Elisashvili, V. 2017. Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune. Bioresour Technol 241: 652–660. https://doi.org/10.1016/j.biortech.2017.05.148

Orłowski, A.; Róg, T.; Paavilainen, S.; Manna, M.; Heiskanen, I.; Backfolk, K.; Timonen, J.; Vattulainen, I. 2015. How endoglucanase enzymes act on cellulose nanofibrils: role of amorphous regions revealed by atomistic simulations. Cellulose 22: 2911–2925. https://doi.org/10.1007/s10570-015-0705-0

Prajapati, B.P.; Kumar, S.R.; Agrawal, S.; Ghosh, M.; Kango, N. 2017. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol 250: 733740. https://doi.org/10.1016/j.biortech.2017.11.099

Reczey, K.; Szengyel, Zs.; Eklund, R.; Zacchi, G. 1996. Cellulase production by T. reesei. Bioresour Technol 57(1): 25–30. https://doi.org/10.1016/0960-8524(96)00038-7

Sharma, D.; Sud, A.; Bansal, S.; Mahajan, R.; Sharma, B.M.; Chauhan, R.S.; Goel, G. 2018. Endocellulase production by Cotylidia pannosa and its application in saccharification of wheat bran to bioethanol. Bioenergy Res 11: 219–227. https://doi.org/10.1007/s12155-017-9890-z

Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. 2010. Advancement and comparative profies in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46(7): 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010

Sohail, M.; Siddiqi, R.; Ahmad, A.; Khan, S.A. 2009. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol 25(6): 437441. https://doi.org/10.1016/j.nbt.2009.02.002

Somogyi, Μ. 1952. Notes on sugar determination. J Biol Chem 195(1): 19–23. https://doi.org/10.1016/S0021-9258(19)50870-5

Stoscheck, C.M. 1990. Quantitation of Protein. Meth Enzymol 182: 5068. https://doi.org/10.1016/0076-6879(90)82008-p

Svobodová, K.; Majcherczyk, A.; Novotný, C.; Kües, U. 2008. Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour Technol 99(3): 463471. https://doi.org/10.1016/j.biortech.2007.01.019

Verzani, J. 2005. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton, FL., USA. https://www.routledge.com/Using-R-for-Introductory-Statistics/Verzani/p/book/9781466590731

Wyman, C.E. 1999. Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24: 189–226. https://doi.org/10.1146/annurev.energy.24.1.189

Xiao, L.P.; Shi, Z.J.; Bai, Y.Y.; Wang, W.; Zhang, X.M.; Sun, R.C. 2013. Biodegradation of lignocellulose by white-rot fungi: structural characterization of water-soluble hemicelluloses. Bioenergy Res 6: 1154–1164. https://doi.org/10.1007/s12155-013-9302-y

Zhang, S.; Chang, S.; Xiao, P.; Qiu, S.; Ye, Y.; Li, L.; Yan, H.; Guo, S.; Duan, J. 2019. Enzymatic in situ saccharification of herbal extraction residue by a medicinal herbal-tolerant cellulase. Bioresour Technol 287: 121417. https://doi.org/10.1016/j.biortech.2019.121417




How to Cite

Boiko, S. ., Netsvetov, M. ., & Radchenko, V. . (2023). Cellulose biosaccharification by Irpex lacteus wood decay fungus. Maderas-Cienc Tecnol, 25, 1–12. https://doi.org/10.4067/s0718-221x2023000100435