Cellulose biosaccharification by Irpex lacteus wood decay fungus
DOI:
https://doi.org/10.4067/s0718-221x2023000100435Keywords:
Cellulose, endo-1,4-β-D-glucanases, exo-1,4-β-D-glucanases, Irpex lacteus, saccharification, thermostabilityAbstract
Enzymatic hydrolysis is an environmentally friendly technology to produce sugars from pretreated biomass. Here, we show that the new Il-11 Irpex lacteus strain can synthesize cellulases in a high quantity. The peptone and filter paper contained in the medium significantly enhanced activity of endo-1,4-β-D-glucanases (app. 50 IU/mL) and total cellulases (app. 9 IU/mL), whereas the medium with peptone and sodium carboxymethyl cellulose stimulated activity of exo-1,4-β-D-glucanases (33 IU/mL). The expression of cellulases reached its maximum within 96–144 hours, and the optimum pH is 3,7. Thermal treatment at 30 °C for 60 minutes activated endo-1,4-β-D-glucanases and total cellulases, while exo-1,4-β-D-glucanases activity was enhanced following 40 °C treatment. In total, the cellulases complex (300 IU/g) saccharified untreated cellulose by 38 % in 48 hours. Concentrate with filter paper activity 100 IU/g is the more balanced enzyme-substrate ratio (2 %), which allows prolonging the saccharification process that will have a positive effect on the cost of the final product.
Downloads
References
Alrumman, S.A. 2016. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47(1): 110119. https://doi.org/10.1016/j.bjm.2015.11.015
Asgher, M.; Ahmad, Z.; Iqbal, H.M.N. 2013. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44: 488–495. https://doi.org/10.1016/j.indcrop.2012.10.005
Balat, M.; Balata, H.; Oz, C. 2008. Progress in bioethanol processing. Prog Energy Combust Sci 34: 551573. https://doi.org/10.1016/j.pecs.2007.11.001
Balsan, G.; Astolfi, V.; Benazzi, T.; Meireles, M.A.; Maugeri, F.; Di Luccio, M.; Dal Prá, V.; Mossi, A.J.; Treichel, H.; Mazutti, M.A. 2012. Characterization of a commercial cellulase for hydrolysis of agroindustrial substrates. Bioprocess Biosyst Eng 35: 1229–1237. https://doi.org/10.1007/s00449-012-0710-8
Bansal, N.; Janveja, C.; Tewari, R.; Soni, R.; Soni, S.K. 2014. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis. Appl Biochem Biotechnol 172(1): 141156. https://doi.org/10.1007/s12010-013-0511-9
Bentil, J.A.; Thygesen, A.; Mensah, M.; Lange, L.; Meyer, A.S. 2018. Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 102(14): 58275839. https://doi.org/10.1007/s00253-018-9072-8
Boiko, S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.:Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biol Szeged 62(1): 5359. https://doi.org/10.14232/abs.2018.1.53-59
Boiko, S.M. 2020. Cellulases of basidiomycetes for the development of bioconversion technologies. Ukr bot j 77(5): 378385. https://doi.org/10.15407/ukrbotj77.05.378
Cragg, S.M.; Beckham, G.T.; Bruce, N.C.; Bugg, T.D.H.; Distel, D.L.; Dupree, P.; Etxabe, A.G.; Goodell, B.S.; et al. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29: 108–119. https://doi.org/10.1016/j.cbpa.2015.10.018
Elisashvili, V.; Kachlishvili, E.; Tsiklauri, N.; Metreveli, E.; Khardziani, T.; Agathos, S.N. 2009. Lignocellulose-degrading enzyme production by white-rot basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25: 331–339. https://doi.org/10.1007/s11274-008-9897-x
Eveleigh, D.E.; Mandels, M.; Andreotti, R.; Roche, C. 2009. Measurement of saccharifying cellulase. Biotechnol Biofuels 2: 21. https://doi.org/10.1186/1754-6834-2-21
Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martnez, A.T.; Otillar, R. et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089): 1715–1719. https://doi.org/10.1126/science.1221748
Fujimoto, Z.; Fujii, Y.; Kaneko, S.; Kobayashi, H.; Mizuno, H. 2004. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J Mol Biol 341(5): 12271235. https://doi.org/10.1016/j.jmb.2004.06.049
Ghose, T.K. 1987. Measurement of cellulase activity. Pure Appl Chem 59(2): 257–268. https://www.degruyter.com/document/doi/10.1351/pac198759020257/html
Hahn-Hagerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Liden, G.; Zacchi, G. 2006. Bio-ethanol — the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12): 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004
Juhász, T.; Szengyel, Z.; Szijártó, N.; Réczey, K. 2004. Effect of pH on Cellulase Production of Trichoderma reesei RUT C30. In: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held. Finkelstein, M.; McMillan, J.D.; Davison, B.H.; Evans, B. (Eds.). Humana Press, Totowa, NJ, USA. https://doi.org/10.1007/978-1-59259-837-3_18
Kapoor, M.; Raj, T.; Vijayaraj, M.; Chopra, A.; Gupta, R.P.; Tuli, D.K.; Kumar, R. 2015. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr Polym 124: 265–273. https://doi.org/10.1016/j.carbpol.2015.02.044
Kumar, S.; Sharma, H.K.; Sarkar, B.C. 2011. Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20(5): 12891298. https://doi.org/10.1007/s10068-011-0178-3
Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3): 506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002
Lee, H.; Lee, Y.M.; Heo, Y.M.; Lee, H.; Hong, J.H.; Jang, S.; Min, M.; Lee, J.; Kim, J.S.; Kim, G.H.; Kim, J.J. 2015. Optimization of endoglucanase production by Trichoderma harzianum KUC1716 and enzymatic hydrolysis of lignocellulosic biomass. BioResources 10(4): 7466–7476. https://doi.org/10.15376/biores.10.4.7466-7476
Mandels, M.; Sternberg, D. 1976. Recent advances in cellulase technology. J Ferment Technol 54(4): 267–286. https://www.osti.gov/etdeweb/biblio/5525985
Manchenko, G.P. 2003. Handbook of Detection of Enzymes on Electrophoretic Gels, CRC Press. https://doi.org/10.1201/9781420040531
Menetrez, M.Y. 2014. Meeting the U.S. renewable fuel standard: A comparison of biofuel pathways. Biofuel Res J 1(4): 110122. https://doi.org/10.18331/BRJ2015.1.4.3
Metreveli, E.; Kachlishvili, E.; Singer, S.W.; Elisashvili, V. 2017. Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune. Bioresour Technol 241: 652–660. https://doi.org/10.1016/j.biortech.2017.05.148
Orłowski, A.; Róg, T.; Paavilainen, S.; Manna, M.; Heiskanen, I.; Backfolk, K.; Timonen, J.; Vattulainen, I. 2015. How endoglucanase enzymes act on cellulose nanofibrils: role of amorphous regions revealed by atomistic simulations. Cellulose 22: 2911–2925. https://doi.org/10.1007/s10570-015-0705-0
Prajapati, B.P.; Kumar, S.R.; Agrawal, S.; Ghosh, M.; Kango, N. 2017. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol 250: 733740. https://doi.org/10.1016/j.biortech.2017.11.099
Reczey, K.; Szengyel, Zs.; Eklund, R.; Zacchi, G. 1996. Cellulase production by T. reesei. Bioresour Technol 57(1): 25–30. https://doi.org/10.1016/0960-8524(96)00038-7
Sharma, D.; Sud, A.; Bansal, S.; Mahajan, R.; Sharma, B.M.; Chauhan, R.S.; Goel, G. 2018. Endocellulase production by Cotylidia pannosa and its application in saccharification of wheat bran to bioethanol. Bioenergy Res 11: 219–227. https://doi.org/10.1007/s12155-017-9890-z
Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. 2010. Advancement and comparative profies in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46(7): 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010
Sohail, M.; Siddiqi, R.; Ahmad, A.; Khan, S.A. 2009. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol 25(6): 437441. https://doi.org/10.1016/j.nbt.2009.02.002
Somogyi, Μ. 1952. Notes on sugar determination. J Biol Chem 195(1): 19–23. https://doi.org/10.1016/S0021-9258(19)50870-5
Stoscheck, C.M. 1990. Quantitation of Protein. Meth Enzymol 182: 5068. https://doi.org/10.1016/0076-6879(90)82008-p
Svobodová, K.; Majcherczyk, A.; Novotný, C.; Kües, U. 2008. Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour Technol 99(3): 463471. https://doi.org/10.1016/j.biortech.2007.01.019
Verzani, J. 2005. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton, FL., USA. https://www.routledge.com/Using-R-for-Introductory-Statistics/Verzani/p/book/9781466590731
Wyman, C.E. 1999. Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24: 189–226. https://doi.org/10.1146/annurev.energy.24.1.189
Xiao, L.P.; Shi, Z.J.; Bai, Y.Y.; Wang, W.; Zhang, X.M.; Sun, R.C. 2013. Biodegradation of lignocellulose by white-rot fungi: structural characterization of water-soluble hemicelluloses. Bioenergy Res 6: 1154–1164. https://doi.org/10.1007/s12155-013-9302-y
Zhang, S.; Chang, S.; Xiao, P.; Qiu, S.; Ye, Y.; Li, L.; Yan, H.; Guo, S.; Duan, J. 2019. Enzymatic in situ saccharification of herbal extraction residue by a medicinal herbal-tolerant cellulase. Bioresour Technol 287: 121417. https://doi.org/10.1016/j.biortech.2019.121417
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.