Nanocellulose addition to recycled pulps in two scenarios emulating industrial processes for the production of paperboard
DOI:
https://doi.org/10.4067/s0718-221x2023000100438Keywords:
Cellulose nanofibers, industrial processes emulation, microfibrillated cellulose, paperboard, recycled pulpsAbstract
This study assesses the incorporation of nanocellulose in a paperboard feedstock emulating two scenarios of industrial processes. It included the production of 170 g/m2 paperboard, using mixtures of short-fiber and long-fiber fractions from recycled pulps with typical mill additives. In all cases, 3wt.% of nanocellulose was added to the pulp suspensions. The first scenario involved three types of nanocellulose addition in a mixture of 78 % long-fiber/22 % short-fiber pulps. The second scenario included the addition of two types of nanocellulose to an unrefined long fiber pulp to produce a multilayer paperboard. Drainage time and physical-mechanical properties of the handsheets were evaluated. Nanocellulose improved the mechanical properties in all cases. The tensile and burst indexes increased 19 % and 28 % in Scenario 1 and up to 60 % and 43 % in Scenario 2, respectively. The lower values in mechanical properties for Scenario 1 were attributed to the effect of the retention system. A new retention system using a cationic polymer with a high charge density produced decreases up to 79 % in the drainage time.
Downloads
References
Ali, I. 2013. Study of the mechanical behavior of recycled fibers. Applications to papers and paperboards, PhD Thesis, Université de Grenoble, Grenoble, France. https://tel.archives-ouvertes.fr/tel-00872112/document
Balea, A.; Blanco, Á.; Monte, M. C.; Merayo, N.; Negro, C. 2016a. Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11(4): 8123-8138. https://doi.org/10.15376/biores.11.4.8123-8138
Balea, A.; Merayo, N.; Fuente, E.; Delgado-Aguilar; M., Mutjé, P.; Blanco, A.; Negro C. 2016b. Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. BioResources 11(2): 3416-3431. https://doi.org/10.15376/biores.11.2.3416-3431
Balea, A.; Merayo, N.; Seara, M.; Fuente, E.; Blanco, A.; Negro, C. 2016c. Effect of NFC from organosolv corn stalk pulp on retention and drainage during papermaking. Cellul Chem Technol 50(3-4): 377-383. http://cellulosechemtechnol.ro/pdf/CCT3-4(2016)/p.377-383.pdf
Balea, A.; Sanchez-Salvador, J.L.; Monte, M.C.; Merayo, N.; Negro, C.; Blanco, A. 2019. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules 24(9): 1800 (1-13). https://doi.org/10.3390/molecules24091800
Boufi, S.; González, I.; Delgado-Aguilar, M.; Tarrés, Q.; Pélach, M.Á.; Mutjé, P. 2016. Nanofibrillated Cellulose as an additive in Papermaking Process: A review. Carbohydr Polym 154: 151-166. https://doi.org/10.1016/j.carbpol.2016.07.117
Delgado-Aguilar, M.; Recas, E.; Puig, J.; Arbat, G.; Pereira, M.; Vilaseca, F.; Mutjé, P. 2015. Aplicación de celulosa nanofibrilada, en masa y superficie, a la pulpa mecánica de muela de piedra: una sólida alternativa al tratamiento clásico de refinado. Maderas-Cienc Tecnol 17(2): 293-304. http://dx.doi.org/10.4067/S0718-221X2015005000028
Dufresne, A. 2013. Nanocellulose: From nature to high performance tailored materials. De Gruyter, Berlin, Germany. https://doi.org/10.1515/9783110254600
Ehman, N.V.; Felissia, F.E.; Tarrés, Q.; Vallejos, M.E.; Delgado-Aguilar, M.; Mutjé, P., Area, M.C. 2020. Effect of nanofiber addition on the physical-mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose 27: 10811-10823. https://doi.org/10.1007/s10570-020-03207-5
Espinosa, E.; Tarrés, Q.; Delgado-Aguilar, M.; Gonzáles, I.; Mutjé, P.; Rodríguez, A. 2015. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23: 837-852. https://doi.org/10.1007/s10570-015-0807-8
European Paper Recycling Council. 2019. Monitoring Report 2019. European Declaration on Paper Recycling 2016-2020. https://www.paperforrecycling.eu/publications/
González, I.; Boufi, S.; Pèlach, M.A.; Alcalà, M.; Vilaseca, F.; Mutjé, P. 2012. Nanofibrillated cellulose as paper additive in eucalyptus pulp. BioResources 7(4): 5167-5180. https://doi.org/10.15376/biores.7.4.5167-5180
Hagman, A.; Huang, H.; Nygärds, M. 2013. Investigation of shear induced failure during SCT loading of paperboards. NPPRJ 28(3): 415-429. https://doi.org/10.3183/npprj-2013-28-03-p415-429
Hubbe, M.A.; Venditti, R.A.; Rojas, O.J. 2007. What happens to cellulosic fibers during papermaking and recycling? a review. Bioresources 2(4): 739-788. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_2_4_739_788_Hubbe_VR_RecyclingCellulosicFibers_Review
Joutsimo, O.; Asikainen, S. 2013. Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. Bioresources 8(2): 2719-2737. https://doi.org/10.15376/biores.8.2.2719-2737
Ju, S.; Gurnagul, N.; Shallhorn, P. 2005. A comparison of the effects on papermaking variables on ring crush strength and short-span compressive strenght of paperboard 3. In: PAP-TAC 91st annual meeting. pp B153–B166.
Kainulainen, M.; Söderhjelm, L. 1999. Pulp and Paper Testing. Chapter 10: End-use properties of packaging papers and boards. Levlin, J.E.; Söderhjelm, L. (Eds.). Papermaking Science and Technology, Finnish Paper Engineer´s Association and TAPPI Press, 216-231.
Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90(2): 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
Lenze, C.J.; Peksa, C.A.; Sun, W.; Hoeger, I.C.; Salas, C.; Hubbe, M.A. 2016. Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking. Cellulose 23: 3951-3962. https://doi.org/10.1007/s10570-016-1077-9
Lourenço, A.; Gamelas, J.; Nunes, T.; Amaral, J.; Mutjé, P.; Ferreira, P.J. 2017. Influence of TEMPO-oxidized cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24: 349-362. https://doi.org/10.1007/s10570-016-1121-9
Merayo, N.; Balea, A.; De la Fuente, E.; Blanco, Á.; Negro, C. 2017. Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24: 2987-3000. https://doi.org/10.1007/s10570-017-1302-1
Motamedian, H.; Halilovic, A.; Kulachenko, A. 2019. Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26: 4099-4124. https://doi.org/10.1007/s10570-019-02349-5
Popil, R. 2009. The trouble with Ring Crush and how SCT and Autoline save the day. Institute of Paper Science, Georgia Tech, Atlanta, USA. https://rbi.gatech.edu/sites/default/files/documents/newsletter_0910.pdf
Poyraz, B.; Tozluoglu, A.; Candan, Z.; Demir, A. 2017. Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J Polym En 37(9): 921-931. https://doi.org/10.1515/polyeng-2017-0022
Poyraz, B.; Tozluoglu, A.; Candan, Z.; Demir, A.; Yavuz, M.; Buyuksari, U.; Unal, H.I.; Fidan, H.; Saka, R.C. 2018. TEMPO-treated CNF composites: pulp and matrix effect. Fiber Polym 19(1): 195-204. https://doi.org/10.1007/s12221-018-7673-y
Saito, T.; Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose . The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5): 1983-1989. https://doi.org/10.1021/bm0497769
Sánchez, R.; Espinosa, E.; Domínguez-Robles, J.; Mauricio, J.; Rodríguez, A. 2016. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92: 1025-1033. https://doi.org/10.1016/j.ijbiomac.2016.08.019
Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C. Miller, M., Olson, J.; Blanco, A. 2020. Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard. Sci Rep 10: 3778 (1-14). https://doi.org/10.1038/s41598-020-60507-3
Spence, K.L.; Venditti, R.A.; Habibi, Y.; Rojas, O.J.; Pawlak, J.J. 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresour Technol 101(15): 5961-5968. https://doi.org/10.1016/J.BIORTECH.2010.02.104
Tanpichai, S.; Witayakran, S.; Srimarut, Y.; Woraprayote, W.; Malila, Y. 2019. Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. J Mater Res Technol 8(4): 3612-3622. https://doi.org/10.1016/j.jmrt.2019.05.024
Tarrés, Q.; Area, M.C.; Vallejos, M.E.; Ehman, N.V.; Delgado-Aguilar, M.; Mutjé, P. 2018. Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose 25: 357-366. https://doi.org/10.1007/s10570-017-1589-y
Tarrés, Q.; Area, M.C.; Vallejos, M.E.; Ehman, N.V.; Delgado-Aguilar, M.; Mutjé, P. 2018. Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose 25: 357-366. https://doi.org/10.1007/s10570-017-1589-y
Tarrés, Q.; Area, M.C.; Vallejos, M.E., Ehman, N.V.; Delgado-Aguilar, M.; Mutjé, P. 2020. Lignocellulosic nanofibers for the reinforcement of brown line paper in industrial water systems. Cellulose 27: 10799-10809. https://doi.org/10.1007/s10570-020-03133-6
Taylor, B. 2019. Forecast predicts steady containerboard growth. Latin America identified as region with above-average growth prospects. Recycl. Today. https://www.recyclingtoday.com/article/containerboard-usa-mexico-china-forecast-recycling/
Technical Association of the Pulp and Paper Industry 2009. Drainage in Pulp. TAPPI T221 cm-09. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T221.aspx
Technical Association of the Pulp and Paper Industry 2015. ursting strength of paper. TAPPI T403 om-15. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T403.aspx
Technical Association of the Pulp and Paper Industry 2019. Grammage of paper and paperboard (weight per unit area). TAPPI T410 om-19. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T410.aspx
Technical Association of the Pulp and Paper Industry 2016. Air resistance of paper (Gurley method). TAPPI T460 om-02. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T460.aspx
Technical Association of the Pulp and Paper Industry 2016. USA. Bending resistance (stiffness) of paper and paperboard (Taber-type tester in basic configuration). TAPPI T489 om-15. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T489.aspx
Technical Association of the Pulp and Paper Industry 2013. Tensile properties of paper and paperboard (using constant rate of elongation apparatus). TAPPI T494 om-13: USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T494.aspx
Technical Association of the Pulp and Paper Industry 2017. Flat crush of corrugating medium (CMT test). TAPPI T809 om-17: USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T809.aspx
Technical Association of the Pulp and Paper Industry 2016. Ring crush of paperboard ( rigid support method ). TAPPI T822 om-16. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T822.aspx
Technical Association of the Pulp and Paper Industry 2013. Short span compressive strength of containerboard. TAPPI T826 om-13. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T826.aspx
Viana, L.; Potulski, D.; Bolzon de Muniz, I.; Andrade, A.; Lopez da Silva, E. 2018. Nanofibrillated cellulose as an additive for recycled paper. Cerne 24(2): 140-148. https://doi.org/10.1590/01047760201824022518
Weise, U.; Paulapuro, H. 1995. Changes of pulp fibre dimensions during drying, In International Paper Physics Conference Technical Section CPPA & TAPPI, Niagara-on-the-Lake, Canada, 121-124. https://research.aalto.fi/en/publications/changes-of-pulp-fibre-dimensions-during-drying
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.