Nanocellulose addition to recycled pulps in two scenarios emulating industrial processes for the production of paperboard

Authors

  • Nanci Vanesa Ehman
  • Yanina Susel Aguerre
  • María Evangelina Vallejos
  • Fernando Esteban Felissia
  • María Cristina Area

DOI:

https://doi.org/10.4067/s0718-221x2023000100438

Keywords:

Cellulose nanofibers, industrial processes emulation, microfibrillated cellulose, paperboard, recycled pulps

Abstract

This study assesses the incorporation of nanocellulose in a paperboard feedstock emulating two scenarios of industrial processes. It included the production of 170 g/m2 paperboard, using mixtures of short-fiber and long-fiber fractions from recycled pulps with typical mill additives. In all cases, 3wt.% of nanocellulose was added to the pulp suspensions. The first scenario involved three types of nanocellulose addition in a mixture of 78 % long-fiber/22 % short-fiber pulps. The second scenario included the addition of two types of nanocellulose to an unrefined long fiber pulp to produce a multilayer paperboard. Drainage time and physical-mechanical properties of the handsheets were evaluated. Nanocellulose improved the mechanical properties in all cases. The tensile and burst indexes increased 19 % and 28 % in Scenario 1 and up to 60 % and 43 % in Scenario 2, respectively. The lower values in mechanical properties for Scenario 1 were attributed to the effect of the retention system. A new retention system using a cationic polymer with a high charge density produced decreases up to 79 % in the drainage time.

Downloads

Download data is not yet available.

References

Ali, I. 2013. Study of the mechanical behavior of recycled fibers. Applications to papers and paperboards, PhD Thesis, Université de Grenoble, Grenoble, France. https://tel.archives-ouvertes.fr/tel-00872112/document

Balea, A.; Blanco, Á.; Monte, M. C.; Merayo, N.; Negro, C. 2016a. Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11(4): 8123-8138. https://doi.org/10.15376/biores.11.4.8123-8138

Balea, A.; Merayo, N.; Fuente, E.; Delgado-Aguilar; M., Mutjé, P.; Blanco, A.; Negro C. 2016b. Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. BioResources 11(2): 3416-3431. https://doi.org/10.15376/biores.11.2.3416-3431

Balea, A.; Merayo, N.; Seara, M.; Fuente, E.; Blanco, A.; Negro, C. 2016c. Effect of NFC from organosolv corn stalk pulp on retention and drainage during papermaking. Cellul Chem Technol 50(3-4): 377-383. http://cellulosechemtechnol.ro/pdf/CCT3-4(2016)/p.377-383.pdf

Balea, A.; Sanchez-Salvador, J.L.; Monte, M.C.; Merayo, N.; Negro, C.; Blanco, A. 2019. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules 24(9): 1800 (1-13). https://doi.org/10.3390/molecules24091800

Boufi, S.; González, I.; Delgado-Aguilar, M.; Tarrés, Q.; Pélach, M.Á.; Mutjé, P. 2016. Nanofibrillated Cellulose as an additive in Papermaking Process: A review. Carbohydr Polym 154: 151-166. https://doi.org/10.1016/j.carbpol.2016.07.117

Delgado-Aguilar, M.; Recas, E.; Puig, J.; Arbat, G.; Pereira, M.; Vilaseca, F.; Mutjé, P. 2015. Aplicación de celulosa nanofibrilada, en masa y superficie, a la pulpa mecánica de muela de piedra: una sólida alternativa al tratamiento clásico de refinado. Maderas-Cienc Tecnol 17(2): 293-304. http://dx.doi.org/10.4067/S0718-221X2015005000028

Dufresne, A. 2013. Nanocellulose: From nature to high performance tailored materials. De Gruyter, Berlin, Germany. https://doi.org/10.1515/9783110254600

Ehman, N.V.; Felissia, F.E.; Tarrés, Q.; Vallejos, M.E.; Delgado-Aguilar, M.; Mutjé, P., Area, M.C. 2020. Effect of nanofiber addition on the physical-mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose 27: 10811-10823. https://doi.org/10.1007/s10570-020-03207-5

Espinosa, E.; Tarrés, Q.; Delgado-Aguilar, M.; Gonzáles, I.; Mutjé, P.; Rodríguez, A. 2015. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23: 837-852. https://doi.org/10.1007/s10570-015-0807-8

European Paper Recycling Council. 2019. Monitoring Report 2019. European Declaration on Paper Recycling 2016-2020. https://www.paperforrecycling.eu/publications/

González, I.; Boufi, S.; Pèlach, M.A.; Alcalà, M.; Vilaseca, F.; Mutjé, P. 2012. Nanofibrillated cellulose as paper additive in eucalyptus pulp. BioResources 7(4): 5167-5180. https://doi.org/10.15376/biores.7.4.5167-5180

Hagman, A.; Huang, H.; Nygärds, M. 2013. Investigation of shear induced failure during SCT loading of paperboards. NPPRJ 28(3): 415-429. https://doi.org/10.3183/npprj-2013-28-03-p415-429

Hubbe, M.A.; Venditti, R.A.; Rojas, O.J. 2007. What happens to cellulosic fibers during papermaking and recycling? a review. Bioresources 2(4): 739-788. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_2_4_739_788_Hubbe_VR_RecyclingCellulosicFibers_Review

Joutsimo, O.; Asikainen, S. 2013. Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. Bioresources 8(2): 2719-2737. https://doi.org/10.15376/biores.8.2.2719-2737

Ju, S.; Gurnagul, N.; Shallhorn, P. 2005. A comparison of the effects on papermaking variables on ring crush strength and short-span compressive strenght of paperboard 3. In: PAP-TAC 91st annual meeting. pp B153–B166.

Kainulainen, M.; Söderhjelm, L. 1999. Pulp and Paper Testing. Chapter 10: End-use properties of packaging papers and boards. Levlin, J.E.; Söderhjelm, L. (Eds.). Papermaking Science and Technology, Finnish Paper Engineer´s Association and TAPPI Press, 216-231.

Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90(2): 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026

Lenze, C.J.; Peksa, C.A.; Sun, W.; Hoeger, I.C.; Salas, C.; Hubbe, M.A. 2016. Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking. Cellulose 23: 3951-3962. https://doi.org/10.1007/s10570-016-1077-9

Lourenço, A.; Gamelas, J.; Nunes, T.; Amaral, J.; Mutjé, P.; Ferreira, P.J. 2017. Influence of TEMPO-oxidized cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24: 349-362. https://doi.org/10.1007/s10570-016-1121-9

Merayo, N.; Balea, A.; De la Fuente, E.; Blanco, Á.; Negro, C. 2017. Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24: 2987-3000. https://doi.org/10.1007/s10570-017-1302-1

Motamedian, H.; Halilovic, A.; Kulachenko, A. 2019. Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26: 4099-4124. https://doi.org/10.1007/s10570-019-02349-5

Popil, R. 2009. The trouble with Ring Crush and how SCT and Autoline save the day. Institute of Paper Science, Georgia Tech, Atlanta, USA. https://rbi.gatech.edu/sites/default/files/documents/newsletter_0910.pdf

Poyraz, B.; Tozluoglu, A.; Candan, Z.; Demir, A. 2017. Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J Polym En 37(9): 921-931. https://doi.org/10.1515/polyeng-2017-0022

Poyraz, B.; Tozluoglu, A.; Candan, Z.; Demir, A.; Yavuz, M.; Buyuksari, U.; Unal, H.I.; Fidan, H.; Saka, R.C. 2018. TEMPO-treated CNF composites: pulp and matrix effect. Fiber Polym 19(1): 195-204. https://doi.org/10.1007/s12221-018-7673-y

Saito, T.; Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose . The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5): 1983-1989. https://doi.org/10.1021/bm0497769

Sánchez, R.; Espinosa, E.; Domínguez-Robles, J.; Mauricio, J.; Rodríguez, A. 2016. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92: 1025-1033. https://doi.org/10.1016/j.ijbiomac.2016.08.019

Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C. Miller, M., Olson, J.; Blanco, A. 2020. Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard. Sci Rep 10: 3778 (1-14). https://doi.org/10.1038/s41598-020-60507-3

Spence, K.L.; Venditti, R.A.; Habibi, Y.; Rojas, O.J.; Pawlak, J.J. 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresour Technol 101(15): 5961-5968. https://doi.org/10.1016/J.BIORTECH.2010.02.104

Tanpichai, S.; Witayakran, S.; Srimarut, Y.; Woraprayote, W.; Malila, Y. 2019. Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. J Mater Res Technol 8(4): 3612-3622. https://doi.org/10.1016/j.jmrt.2019.05.024

Tarrés, Q.; Area, M.C.; Vallejos, M.E.; Ehman, N.V.; Delgado-Aguilar, M.; Mutjé, P. 2018. Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose 25: 357-366. https://doi.org/10.1007/s10570-017-1589-y

Tarrés, Q.; Area, M.C.; Vallejos, M.E.; Ehman, N.V.; Delgado-Aguilar, M.; Mutjé, P. 2018. Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose 25: 357-366. https://doi.org/10.1007/s10570-017-1589-y

Tarrés, Q.; Area, M.C.; Vallejos, M.E., Ehman, N.V.; Delgado-Aguilar, M.; Mutjé, P. 2020. Lignocellulosic nanofibers for the reinforcement of brown line paper in industrial water systems. Cellulose 27: 10799-10809. https://doi.org/10.1007/s10570-020-03133-6

Taylor, B. 2019. Forecast predicts steady containerboard growth. Latin America identified as region with above-average growth prospects. Recycl. Today. https://www.recyclingtoday.com/article/containerboard-usa-mexico-china-forecast-recycling/

Technical Association of the Pulp and Paper Industry 2009. Drainage in Pulp. TAPPI T221 cm-09. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T221.aspx

Technical Association of the Pulp and Paper Industry 2015. ursting strength of paper. TAPPI T403 om-15. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T403.aspx

Technical Association of the Pulp and Paper Industry 2019. Grammage of paper and paperboard (weight per unit area). TAPPI T410 om-19. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T410.aspx

Technical Association of the Pulp and Paper Industry 2016. Air resistance of paper (Gurley method). TAPPI T460 om-02. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T460.aspx

Technical Association of the Pulp and Paper Industry 2016. USA. Bending resistance (stiffness) of paper and paperboard (Taber-type tester in basic configuration). TAPPI T489 om-15. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T489.aspx

Technical Association of the Pulp and Paper Industry 2013. Tensile properties of paper and paperboard (using constant rate of elongation apparatus). TAPPI T494 om-13: USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T494.aspx

Technical Association of the Pulp and Paper Industry 2017. Flat crush of corrugating medium (CMT test). TAPPI T809 om-17: USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T809.aspx

Technical Association of the Pulp and Paper Industry 2016. Ring crush of paperboard ( rigid support method ). TAPPI T822 om-16. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T822.aspx

Technical Association of the Pulp and Paper Industry 2013. Short span compressive strength of containerboard. TAPPI T826 om-13. USA. https://imisrise.tappi.org/TAPPI/Products/01/T/0104T826.aspx

Viana, L.; Potulski, D.; Bolzon de Muniz, I.; Andrade, A.; Lopez da Silva, E. 2018. Nanofibrillated cellulose as an additive for recycled paper. Cerne 24(2): 140-148. https://doi.org/10.1590/01047760201824022518

Weise, U.; Paulapuro, H. 1995. Changes of pulp fibre dimensions during drying, In International Paper Physics Conference Technical Section CPPA & TAPPI, Niagara-on-the-Lake, Canada, 121-124. https://research.aalto.fi/en/publications/changes-of-pulp-fibre-dimensions-during-drying

Downloads

Published

2023-06-19

How to Cite

Ehman, N. V. ., Aguerre, Y. S. ., Vallejos, M. E. ., Felissia, F. E. ., & Area, M. C. . (2023). Nanocellulose addition to recycled pulps in two scenarios emulating industrial processes for the production of paperboard. Maderas. Ciencia Y Tecnología, 25, 1–14. https://doi.org/10.4067/s0718-221x2023000100438

Issue

Section

Article