Cross laminated timber bonding quality for different brazilian species and pressing levels


  • João Vítor Felippe Silva
  • Karina Aparecida de Oliveira
  • Carolina Aparecida Barros Oliveira
  • Maria Fernanda Felippe Silva
  • Julio Cesar Molina



Cross Laminated Timber, reforestation species, bonding quality, delamination, shear strength


The proper choice of raw materials and manufacturing parameters for Cross Laminated Timber is essential to promote the proper bonding of the lamellas, aiming at their application in construction. However, few Brazilian species are currently used in the production of Cross Laminated Timber. The aim of this work was to characterize the bonding quality of four Brazilian reforestation species (Pinus elliottii, Eucalyptus grandis, Toona ciliata and Acrocarpus fraxinifolius) in the manufacture of Cross Laminated Timber with two-component polyurethane adhesive and five different pressure levels (from 0,1 MPa to 1,3 MPa). Bonding quality was evaluated through delamination and glue line shear tests based on the standard EN 14080 (2013). Delamination was affected by the wood species, and the best adhesion occurred for the Cross Laminated Timber manufactured with Pinus elliottii and Acrocarpus fraxinifolius at the bonding pressure of 0,7 MPa. Cross Laminated Timber bonding pressure did not affect the percentage of wood in the shear test fractured surface, whereas higher density Cross Laminated Timber showed higher percentages.


Download data is not yet available.


Associação Brasileira de Normas Técnicas ABNT. 1997. Projeto de estruturas de madeira. ABNT 7190. Rio de Janeiro, Brazil.

Associação Brasileira de Normas Técnicas ABNT. 2021. Madeira laminada colada estrutural: método de ensaio. PN-02:126.10-001-5. Rio de Janeiro, Brazil.

Associação Brasileira de Normas Técnicas ABNT. 2021. Madeiras – Madeira Lamelada Colada Cruzada estrutural (Cross Laminated Timber): método de ensaio. PN-02:126.10-001-6. Rio de Janeiro, Brazil.

Betti, M.; Brunetti, M.; Lauriola, M.P.; Nocetti, M.; Ravalli, F.; Pizzo, B. 2016. Comparison of newly proposed test methods to evaluate the bonding quality of Cross-Laminated Timber (CLT) panels by means of experimental data and finite element (FE) analysis. Constr Build Mater 125: 952-963.

Brandner, R.; Flatscher, G.; Ringhofer, A.; Shickhofer, G.; Thiel, A. 2016. Cross laminated timber (CLT): overview and development. Eur J Wood Prod 74(3): 331-351.

Brandt, K.; Wilson, A.; Bender, D.; Dolan, J.D.; Wolcott, M.P. 2019. Techno-economic analysis for manufacturing cross-laminated timber. Bioresources 14(4): 7790-7804.

Braz, R.L.; Oliveira, J.T.S.; Rodrigues, B.P.; Arantes, M.D.C. 2013. Propriedades físicas e mecânicas da madeira de Toona ciliata em diferentes idades. Floresta 43(4): 663-670.

Buck, D.; Hagman, O. 2018. Production and in-plane compression mechanics of alternatively angled layered cross-laminated timber. Bioresources 13(2): 4029-4045.

Christoforo, A.L.; Aquino, V.B.M.; Govane, J.S.; Dias, A.M.P.G.; Panzera, T.H.; Lahr, F.A.R. 2020. Alternative model to determine the characteristic strength value of wood in the compression parallel to the grain. Maderas-Cienc Tecnol 22(3): 281-290.

European Committee for Standardization EN. 2013. Timber structures – glued Laminated timber and glued solid timber – requirements. EN 14080. Brussels, Belgium.

Faria, D.L.; Cruz, T.M.; Mesquita Júnior, L.; Duarte, P.J.; Mendes, L.M.; Guimarães Júnior, J.B. 2019. Number of laminae on the mechanical behavior of glued laminated timber (glulam) of Toona ciliata produced with vegetable polyurethane adhesive. Ciênc Agrotec 43.

Gomes, N.B. 2018. Análise de elementos estruturais de MLC na flexão com base na versão de revisão da norma ABNT NBR 7190:2013. Master Degree Thesis, Universidade Estadual Paulista. Guaratinguetá, Brazil.

Grandmont, J.F.; Yeh, B.; Dagenais, C. 2019. 1. Introduction to cross-laminated timber. In: Canadian CLT Handbook. Karacabeyli, E.; Gagnon, S. (Eds.). FPInnovations, Pointe-Claire, Canada.

Jeleč, M.; Varevac, D.; Rajčić, V. 2018. Cross-laminated timber (CLT): a state of the art report. J Croat Assoc Civ Eng 70(2): 75-95.

Li, Y. 2015. Duration-of-load and size effects on the rolling shear strength of cross laminated timber. Ph.D. Dissertation, University of British Columbia. Vancouver, Canada.

Moya, L.; Gomar, C.P.; Vega, A.; Sánchez, A.; Torino, I.; Baño, V. 2019. Relationship between manufacturing parameters and structural properties of Eucalyptus grandis glued laminated timber. Maderas-Cienc Tecnol 21(3): 327-340.

Oliveira, C.A.B.; Silva, J.V.F.; Bianchi, N.A.; Campos, C.I.; Oliveira, K.A.; Galdino, D.S.; Bertolini, M.S.; Morais, C.A.G.; de Souza, A.J.D.; Molina, J.C. 2020a. Influence of Indian cedar particle pretreatments on cement-wood composite properties. Bioresources 15(1): 1656-1664.

Oliveira, G.L. 2018. Cross Laminated Timber (CLT) no Brasil: processo construtivo e desempenho: Recomendações para o processo de projeto arquitetônico. Master Degree Thesis, Universidade de São Paulo. São Paulo, Brazil.

Oliveira, R.G.E.; Gonçalves, F.G.; Segundinho, P.G.A.; Oliveira, J.T.S.; Paes, J.B.; Chaves, I.L.S.; Brito, A.S. 2020b. Analysis of glue line and correlations between density and anatomical characteristics of Eucalyptus grandis × Eucalyptus urophylla glulam. Maderas-Cienc Tecnol 22(4): 495-504.

Pereira, M.C.M.; Calil Junior, C. 2019. Strength and Stiffness of Cross Laminated Timber (CLT) panels produced with Pinus and Eucalyptus: experimental and analytical comparisons. Rev Mater 24(2).

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rasband, W.S. 2021. ImageJ. U.S. National Institutes of Health, Maryland, USA.

Sikora, K.S.; McPolin, D.O.; Harte, A.M. 2016. Shear strength and durability testing of adhesive bonds in cross-laminated timber. J Adhes 92(7): 758-777.

Silva, J.V.F.; Silva, M.F.F.; Ferreira, B.S.; Fiorelli, J.; Christoforo, A.L.; Campos, C.I. 2021. Castor oil based polyurethane adhesive content on OSSB produced with soybean straw. Ambient Constr 21(1): 23-36.

Vick, C. B. 1999. Chapter 9: Adhesive bonding of wood materials. In: Wood handbook—Wood as an engineering material. General technical report FPL - GTR-113. Forest Products Laboratory, Madison, United States of America.

Vilela, R. 2020. Structural performance in bending of cross-laminated timber plates. Master Degree Thesis, Universidade Estadual de Campinas. Campinas, Brazil.

Vilguts, A.; Serdjuks, D.; Pakrastins, L. 2015. Design methods of elements from cross-laminated timber subjected to flexure. Procedia Eng 117: 10-19.

Wang, Z.; Zhou, J.; Dong, W.; Yao, Y.; Gong, M. 2018. Influence of technical characteristics on the rolling shear properties of cross laminated timber by modified planar shear tests. Maderas-Cienc Tecnol 20(3): 469-478.

Yusof, N.M.; Tahir, P.M.; Hua, L.S.; Sabaruddin, F.A.; James, R.M.S.; Khan, M.A.; Hao, L.C.; Roseley, A.S.M. 2021. Thermal properties of Acacia mangium cross laminated timber and its gluelines bonded with two structural adhesives. Maderas-Cienc Tecnol 23(2): 1-10.




How to Cite

Silva, J. V. F. ., de Oliveira, K. A. ., Barros Oliveira, C. A. ., Silva, M. F. F. ., & Molina, J. C. . (2023). Cross laminated timber bonding quality for different brazilian species and pressing levels. Maderas-Cienc Tecnol, 26, 1–12.




Most read articles by the same author(s)