Quality of Tectona grandis for sawn wood production

Authors

  • T.A.S. Albuês Federal University of Paraná (UFPR), Department of Forest Engineering and Technology, Curitiba, Paraná, Brazil.
  • B.L.C. Pereira Federal University of Mato Grosso (UFMT), Faculty of Forestry Engineering, Cuiabá, Mato Grosso, Brazil.
  • A.G. Carvalho Federal University of Uberlândia (UFU), Institute of Agricultural Sciences, Campus Monte Carmelo, Minas Gerais, Brazil.
  • R. Môra Federal University of Mato Grosso (UFMT), Faculty of Forestry Engineering, Cuiabá, Mato Grosso, Brazil.
  • A.C. Oliveira Federal University of Mato Grosso (UFMT), Faculty of Forestry Engineering, Cuiabá, Mato Grosso, Brazil.

DOI:

https://doi.org/10.22320/s0718221x/2024.06

Keywords:

Genetic enhancement, grain, sawnwood, teak, wood drying

Abstract

Forestry companies have invested in genetic improvement to increase wood production in a shorter amount of time. Thus, studies are needed to compare the properties of clonal and seminal wood materials.  The objective of this study was to analyze physical and mechanical properties of Tectona grandis from clonal (C1 and C2) and seminal (S) origin and evaluate the yield and quality of sawn wood subjected to outdoor and oven drying. Genetic material was collected from six, 15-year-old trees. Clone C2 presented the lowest amount of bark, and 51 % heartwood up to half the commercial height, while the heartwood of C1 and S went up to 25 % of the height. The three materials did not differ statistically for maximum angular deviation, pith eccentricity, basic density, Janka hardness, anisotropy, commercial income of sawn wood and the presence of knots. After the drying processes, the bowing and crooking indexes were less than 5 mm.m-1, however, the seminal material showed a higher cracking incidence after outdoor and oven drying. In conclusion, the wood properties of the three materials are similar. In addition, the oven drying process is recommended.

Downloads

Download data is not yet available.

References

Arias L.A.U.; Monteuuis O. 2013. Teak: new trends in silviculture, commercialization and wood utilization. International Forestry and Agroforestry (INFOA), Costa Rica.

Arruda T.P.M.DE. 2013. Drying juvenile wood of Tectona grandis L.f. Ph.D. Thesis, Federal University of Lavras. Lavras-MG, Brazil. http://repositorio.ufla.br/jspui/handle/1/2457.

ABNT. 2003. NBR 11941: Wood: determination of basic density. Brazilian Technical Standards Association, Rio de Janeiro, Brazil.

ABNT .1997. NBR 7190: Design of wooden structure. Brazilian Technical Standards Association, Rio de Janeiro, Brazil.

ABNT .1986. NBR 9487. Classification of hardwood sawn wood. Brazilian Technical Standards Association, Rio de Janeiro, Brazil.

ABNT .2002. NBR 14806. Eucalyptus lumber - Requirements, Brazilian Association of Technical Standards, Rio de Janeiro, Brazil.

Batista, D.C.; Oliveira, J.T.S.; Pizetta, R.P.; Lube, V.M. 2016. Quality assessment of Air-dried Teakwood boards using moisture content gradients. FLORAM 24. http://dx.doi.org/10.1590/2179-8087.066613

Benedetti, V. 2018. Characterization of teak wood planted at different ages and regions for flooring production. MSc. Dissertation, Agriculture School “Luiz de Queiroz” -USP. Piracicaba- SP, Brazil. https://teses.usp.br/teses/disponiveis/11/11150/tde-20032019-121422/pt-br.php.

Berrocal, A.; Moya, R.; Rodríguez-Solis, A.M.; Muñoz, F. 2017. Drying of plantation-grown Tectona grandis wood with daily-controlled drying rate schedules. J Trop For Sci 29 (1): 69–79. https://www.jstor.org/stable/44028276

Betancur, S.C.A.; Herrera, B.J.F.; Mejía, M.L.C. 2000. Study of the physical and mechanical properties, workability and drying of teak (Tectona grandis L.f) from Puerto Libertador (Córdoba). Rev Fac Agr 53 (1): 913-939.

Blanco-Flórez, J.; Trugilho, P.F.; Lima, J.T.; Gherardi-Hein, P.R.; Silva, J.R.M.DA. 2014 Characterization of the young wood of Tectona grandis L. f. planted in Brazil. Madera y Bosques 20(1): 11-20. https://www.scielo.org.mx/pdf/mb/v20n1/v20n1a2.pdf

Boschetti, W.T.N.; Paes, J.B.; Oliveira, J.T. DA S., Dudecki, L. 2015. Anatomical characteristics for cellulose production of reaction wood from inclined Eucalyptus trees. Pesquisa Agropecuária Brasileira 50 (6): 459-467. https://doi.org/10.1590/S0100-204X2015000600004

Burger, L.M.; Richter, H.G. 1991. Anatomy of wood. São Paulo: Nobel.

Coelho, J.C.F.; Firmino A.V.; Silva, J.G.M.Da.; Vidaurre, G.B.; Medeiros Neto, P.N.De; Soranso, D.R. 2015. Characterization of the wood grain of six forest species. In: II Congresso Brasileiro de Ciência e Tecnologia da Madeira. Belo Horizonte.

Csanády, E.; Magoss, E.; Tolvaj, L. 2015. Quality of machined wood surfaces. Cham: Springer. https://link.springer.com/content/pdf/10.1007/978-3-319-22419-0.pdf

Darmawan, E.; Novantara, P.; Suwarto, G.P.; Andriyat, R.; Nurhayati, Y. 2021. The implementation of k-means algorithm to determine the quality of teak wood in image based on the texture. Journal of Physics: Conference Series 1933. https://doi.org/10.1088/1742-6596/1933/1/012003.

Florest Products Laboratory. 1973. Standard terms for describing wood. University of Wisconsin, FPL-0171.

Food and Agriculture Organization of the United Nations - FAO. 1992. Soil Map of the World. Rome: FAO/UNESCO. http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ [Accessed February 02, 2021].

Gonçalves, F.G.; Oliveira, J.T.D.S.; Silva, G.F.D.; Nappo, M.E.; Tomazelo Filho, M. .2010. Dendrometric parameters and correlations with technological properties in a clonal hybrid of Eucalyptus urophylla x Eucalyptus grandis. Revista Árvore 34: 947-959.

Hernandez, R.E.; Almeida, G. 2003. Effects of density and interlocked grain on shear strength. Wood Fiber Sci 35(2): 154-166. https://wfs.swst.org/index.php/wfs/article/view/688

Instituto Brasileiro de Desenvolvimento Florestal. 1984. Standard for classification of hardwood lumber. Brasília-DF, Brazil.

International Tropical Timber Organization. 2021. Tropical Timber Market Report 23. https://www.itto.int/files/user/mis/MIS_1-15_July2021.pdf

Kollert W.; Kleine M. 2017. The Global Teak Study. Analysis, Evaluation and Future Potential of Teak Resources. Viena. IUFRO.

Köppen, W. 1936. Das geographische System der Klimate. Köppen, W.; Geiger, R. (Eds). Handbuch der Klimatologie – Gebrüder Bornträger, Berlin 1: 1-44. (In German)

Kretschmann, D.E. 2010. Mechanical Properties of Wood. In: Wood handbook—Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. pp. 5-1 a 5-44.

Lemos, J.A.Dos S.; Mendes, M.C.D.A.S.; Madi, J.P.S.; Pereira, B.L.C.; Oliveira, A.C. 2019. Influence of the propagation method on the production and quality of Tectona grandis wood. Adv Forestry Sci 6: 761-765.

Lengowski, E.C.; Bonfatti Júnior, E.A.; Nisgoski, S.; Muñiz, G.I.B. de.; Klock, U. 2021. Properties of thermally modified teakwood. Maderas-Cienc Tecnol 24. http://dx.doi.org/10.4067/s0718-221x2022000100454

Lima, I.L.D.; Garcia, J.N.; Stape, J.L. 2007. Influence of thinning and fertilization on the displacement of bone marrow and log end cracks of Eucalyptus grandis Hill ex-Maiden. Cerne 13: 170-177. https://www.redalyc.org/pdf/744/74413206.pdf

Limaye, V.D. 1954. Interlocking of grain in Indian timbers. Indian Forester, Dehradun. 80: 6-9.

Loiola, P.L.; Juízo, C.G.F.; Marchesan, R.; Klitzke, R.J.; Rocha, M.P.DA. 2015. Drying of Wood from Mimosa scabrella, Eucalyptus dunnii and Tectona grandis in Solar Kiln, in South Brazil. Australian Journal of Basic and Applied Sciences 9: 445-453.

Martha, R.; Mubarok,M.; Batubara, I.; Rahayu, I.S.;Setiono, L.; Darmawan, W.; Akong, F.; O.; George, B.; Gerardin, C.; Gerardin, P. 2021. Effect of furfurylation treatment on technological properties of short rotation teak wood. J Mater Res Technol 12: 1689-1699. https://doi.org/10.1016/j.jmrt.2021.03.092

Medeiros, R.A.; Paiva, H.N.; Leite, H.G.; Oliveira Neto, S.N.; Vendrúscolo, D.G.S.; Silva, F.T. 2015. Silvicultural and economic analysis of clonal and seminal plantations of Tectona grandis L.f. in Taungya system. Rev Arv 39: 893-903. https://doi.org/10.1590/0100-67622015000500012

Motta, J.P. 2011. Technological properties of Tectona grandis L.f. from the Doce River Valley, Minas Gerais. MSc. Dissertation, Federal University of Espírito Santo. Brazil. http://repositorio.ufes.br/handle/10/4959.

Monteuuis, O.; Maître, H.F. 2006. Advances in teak cloning: New developments in teak cloning lead to better plantation stock. Tropical Forest Update 17: 13-15.

Nock, H.P.; Richter, H.G.; Burger, L.M. 1975. Wood technology. Curitiba: UFPR. Brazil.

Nogueira, M. 2007. Classification of sawn wood pieces with structural dimensions of Eucalyptus sp. using non-destructive tests. PhD. Thesis, Paulista State University. Brazil.

Oliveira, J.R.V. 2003. System for calculating nutritional balance and recommending liming and fertilizing teak stands - Nutriteca. PhD. Thesis - Federal University of Viçosa. Brazil.

Panshin, A.J.; De Zeeuw, C. 2015. Textbook of wood technology: structure, identification, properties and uses of the commercial woods of the United States and Canada. Coelho, J.C.F.; Firmino, A.V.; Silva, J.G.M.DA; Vidaurre, G.B.; Medeiros Neto, P.N.DE; Soranso, D.R. (Eds.). Characterization of the wood grain of six forest species. In: II Congresso Brasileiro de Ciência e Tecnologia da Madeira. Belo Horizonte. pp. 1-6.

Pérez, L.D.; Kanninem, M. 2003. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fennica 37: 45-54.

Queiroz, F.L.C. 2018. Wood quality of Tectona grandis L.f. of different origins for use in the forest products industry. PhD. Thesis, University of Brasilia. Brazil.

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rahmawati, R.B.; Widiyatno, W.; Hardiwinoto, S.; Budiadi, B.; Nugroho, W. D.; Wibowo, A.; Rodiana, D. 2022. Effect of spacing on growth, carbon sequestration, and wood quality of 8-year-old clonal teak plantation for sustainable forest teak management in Java Monsoon Forest, Indonesia. Biodivesitas 23: 4180-4188. https://doi.org/10.13057/biodiv/d230840.

Raposo, A.; Fermino Junior, P.C.P.; Teixeira, R.B.; Pereira, J.E.S. 2010. Production of micropropagation teak seedlings. Rio Branco: Embrapa, Circular Técnica 56: 01-08.

Rizanti1, D.E.; Darmawan, W.; George1, B.; Merlin, A.; Dumarcay, S.; Chapuis, H.; Gérardin, C.; Gelhaye, E.; Raharivelomanana, P.; Sari, R. K.; Syafii, W.; Mohamed, R.; Gerardin, P. 2018. Comparison of teak wood properties according to forest management:short versus long rotation. Annal For Sci 75: 39. https://doi.org/10.1007/s13595-018-0716-8

Souza, A.P.; Stangerlin, D.M.; Melo, R.R.DE; Uliana, E.M. 2016. Seasonal humidity of wood balance for the State of Mato Grosso. Pesquisa Florestal Brasileira 36: 423-433. https://doi.org/10.4336/2016.pfb.36.88.1036

Tze, W.T.Y. 1999. Recovery and quality of lumber from mature teak (Tectona grandis) planted in Sabah, Malaysia. J Trop For Prod 5: 115-123.

Thulasidas, P.K.; Baillères, H. 2017. Wood Quality for Advanced Uses of Teak from Natural and Planted Forests. In. The Global Teak Study. Analysis, Evaluation and Future Potential of Teak Resources IUFRO World Series Volume 36. Vienna.

Trujillo, F.T.; Klitzke, R.J.; Rocha, M.P.DA; Mora, H.E.G.; Segura, C.E.C. 2021. The effect of air velocity on the characteristics produced by conventional drying of Tectona grandis L.f. wood. Floresta 51:1019-1028. https://doi.org/10.5380/rf.v51 i4. 75863.

Valero, S.W.; Reyes, C.E.C.; Garay, J.D.A. 2005. Study of the physical-mechanical properties of the 20-year-old Tectona grandis species from the plantations of the experimental unit of the Ticoporo forest reserve, Barinas state. Revista Forestal Venezolana 49: 61-73. http://www.saber.ula.ve/bitstream/handle/123456789/24409/articulo7.pdf?sequence=2&isAllowed=y

Vidaurre, G.B.; Silva, J.G.L.M. Da; Castro, M.De; Coelho, J.C.F.; Brito, A.S.; Moulin, J.C. 2017. Relationship of grain to some growth variables and properties of Khaya ivorensis wood. Sci For 45 (114): 249-259.

Webb, C.D. 1969. Variation of interlocked grain in Sweetgum. For Prod J 19: 8.

Wiedenhoeft, A. 2010. Structure and Function of Wood. In.: Wood handbook—Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.pp. 3-1 a 3-18.

Yang, B.; Jia, H.; Zhao, Z.; Pang, S.; Cai, D. 2020. Horizontal and Vertical Distributions of Heartwood for Teak Plantation. Forests 11(2): 225; https://doi.org/10.3390/f11020225.

Zahabu, E.; Raphael, T.; Chamshama, S.A.O.; Iddi, S.; Malimbwi, E. 2015. Effect of spacing regimes on growth, yield, and, wood properties of Tectona grandis at Longuza Forest Plantation, Tanzania. International J For Res ID 469760. https://doi.org/10.1155/2015/469760

Downloads

Published

2023-08-14

How to Cite

Albuês, T., Pereira, B., Carvalho, A., Môra, R., & Oliveira, A. (2023). Quality of Tectona grandis for sawn wood production. Maderas-Cienc Tecnol, 26, 1–16. https://doi.org/10.22320/s0718221x/2024.06

Issue

Section

Article