Thinning wood properties of Nothofagus alpina under three different silvicultural conditions


  • Maximilian Wentzel
  • Héctor Pesenti
  • Fernando Droppelmann
  • Aldo Rolleri



FT-IR, intensive silviculture, plantation wood, raulí, thinning wood, X-Ray diffraction, wood crystallinity


The main objective of this study was to assess the properties of Nothofagus alpina wood from thinning that originates from two sites with intensive silviculture and one similar to a secondary growth forest, with different soil, climatic conditions and age. To achieve this, some mechanical, physical and chemical-crystalline properties were characterized; studying the differences from pith to bark and between the selected trees that were taken from the thinning of the three plantations. Among the studied plantation sites, there were statistical differences in equilibrium moisture content, density and modulus of elasticity. Furthermore, FT-IR was able to differentiate the chemical-crystalline compositions from pith to bark and between plantations, while the X-Ray Diffraction showed differences in the crystallinity index. It was possible to differentiate between the sites with a more intense silvicultural intervention and the one with more variable growth conditions.


Download data is not yet available.


Balasso, M.; Hunt, M.; Jacobs, A.; O'Reilly-Wapstra, J. 2021. Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. For Ecol Manag 491: 118992.

Barrios, A.; Trincado, G.; Watt, M.S. 2017. Wood properties of juvenile and mature wood of Pinus radiata D. Don trees growing on contrasting sites in Chile. For Sci 63(2): 184-191.

Campos, A.; Cubillos, G.; Morales, F.; Pastene A. 1990. Informe Técnico 122: Propiedades y usos de especies madereras de corta rotación. [Technical Report 122: Properties and uses of short rotation timber species]. INFOR/CORFO, Santiago, Chile. (In Spanish)

Carabias, R.; Karsulovic, J.T. 1978. Boletín Técnico nº 51: Densidad y propiedades mecánicas de madera de renovales de raulí Nothofagus alpina (Poepp. et Endl.) Oerst. [Technical Bulletin No. 51: Density and mechanical properties of wood from raulí Nothofagus alpina (Poepp. Et Endl.) Oerst]. Facultad de Ciencias Forestales. Universidad de Chile, Santiago, Chile. (In Spanish)

Casas, A.; Alonso, M.V.; Oliet, M.; Rojo, E.; Rodriguez, F. 2012. FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium‐based ionic liquids. J Chem Technol Biotechnol 87(4): 472-480.

Colom, X.; Carrillo, F. 2002. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38(11): 2225-2230.

Colom, X.; Carrillo, F. 2005. Comparative study of wood samples of the northern area of Catalonia by FTIR. J Wood Chem Technol 25(1-2): 1-11.

Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. 2003. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80(3): 543-549.

Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. 2010. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohyd Polym 82(3): 772-778.

Díaz Bravo, S.; Espinosa, M.; Valenzuela, L.; Cancino, J.; Lasserre, J.P. 2012. Effect of thinning on growth and some properties of wood of Eucalyptus nitens in a plantation of 15 years old. Maderas-Cienc Tecnol 14(3): 373-388.

Deutsches Institut für Normung. 1978. DIN 52186: Testing of wood: bending test. German Institute for Standardisation, Berlin, Germany.

Donoso, P.; Donoso, C.; Sandoval, V. 1993. Proposición de zonas de crecimiento de renovales de roble (Nothofagus obliqua) y raulí (Nothofagus alpina) en su rango de distribución natural. [Proposition of growth zones for roble (Nothofagus obliqua) and raulí (Nothofagus alpina) second growth forests along their natural distribution rank]. Bosque 14(2): 37-55. (In Spanish)

Donoso, P.; Soto, D.P. 2010. Plantaciones con especies nativas en el centro-sur de Chile: experiencias, desafíos y oportunidades. [Plantations with native species in south-central Chile: experiences, challenges and opportunities]. Revista Bosque Nativo 47. 10-17. (In Spanish)

Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc Tecnol 15(2): 245-258.

Evans, P.A. 1991. Differentiating “hard” from “soft” woods using Fourier transform infrared and Fourier transform spectroscopy. Spectrochim Acta A 47(9-10): 1441-1447.

Faix, O. 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45(s1): 21-28.

Faix, O.; Böttcher, J.H. 1992. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz Roh Werkst 50(6): 221-226.

Funda, T.; Fundova, I.; Gorzsás, A.; Fries, A.; Wu, H.X. 2020. Predicting the chemical composition of juvenile and mature woods in Scots pine (Pinus sylvestris L.) using FTIR spectroscopy. Wood Sci Technol 54(2): 289-311.

Gava, J.L.; Gonçalves, J.L.d.M. 2008. Soil attributes and wood quality for pulp production in plantations of Eucalyptus grandis clone. Sci Agric 65(3): 306-313.

González, F.A. 2018. Variación de la densidad básica de la madera y Módulo de Elasticidad en plantaciones jóvenes de Nothofagus alpina. [Variation of basic wood density and Modulus of Elasticity in young plantations of Nothofagus alpina.]. Graduate Thesis, Universidad Austral de Chile, Valdivia, Chile. (In Spanish)

INFOR 2022. Statistical bulletin N°187 - Chilean statistical yearbook of forestry 2022. Instituto Forestal de Chile, Santiago de Chile.

Instituto Nacional de Normalización. 2014. INN NCh1198:2014: Madera - Construcciones en madera - Cálculo. [Chilean National Institute of Standardization - NCh1198:2014. - Wooden constructions - Calculation]. Santiago, Chile. (In Spanish)

Li, M. Y.; Ren, H. Q.; Wang, Y. R.; Gong, Y. C.; Zhou, Y. D. 2021. Comparative studies on the mechanical properties and microstructures of outerwood and corewood in Pinus radiata D. Don. J. Wood Sci 67(60).

Lionetto, F.; Del Sole, R.; Cannoletta, D.; Vasapollo, G.; Maffezzoli, A. 2012. Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10): 1910-1922.

Loewe, V.; Toral, M.; Freitte, G.; Camelio, M.E.; Mery, M. A.; López, C.; Urquieta, E. 1998. Monografía raulí: Nothofagus alpina. [Raulí monograph: Nothofagus alpina]. CONAF/INFOR/FIA, Santiago, Chile. (In Spanish)

Marchessault, R.H. 1962. Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5(1-2): 107-130.

Meneses, M.; Nuñez, P.; Paredes, G. 1991. Opciones silviculturales para el manejo y utilización del bosque Siempreverde, Décima Región desde Río Bueno al sur. Informe de Convenio Nº 184. Informe Final. [Silvicultural options for the management and use of the Evergreen Forest, Tenth Region from Río Bueno to the south. Report on Agreement No. 184. Final Report]. Facultad de Ciencias Forestales, Universidad Austral de Chile, Valdivia, Chile. (In Spanish)

National Institute of Standards and Technology. 2015. NISTS Standard Reference Material 660c: Line Position and Line Shape Standard for Powder Diffraction (Lanthanum Hexaboride Powder). National Institute of Standards and Technology, Gaithersburg, Maryland, United States.

Olsson, A.-M.; Salmén, L. 2004. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339(4): 813-818.

Pandey, K.K. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12): 1969-1975.<1969::AID-APP6>3.0.CO;2-D

Pérez, V. 1983. Manual de propiedades físicas y mecánicas de maderas chilenas. [Manual of physical and mechanical properties of Chilean wood]. Proyecto CONAF/PNUD/FAO-CHI 76/003. Documento de Trabajo Nº 47, Santiago, Chile. (In Spanish)

Poletto, M.; Zattera, A.J.; Santana, R.M.C. 2012. Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126(S1): E337-E344.

Popescu, C.-M.; Popescu, M.-C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. 2007. Spectral characterization of eucalyptus wood. Appl Spectrosc 61(11): 1168-1177.

Rana, R.; Müller, G.; Naumann, A.; Polle, A. 2008. FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. Holzforschung 62(5): 530-538.

Reyes, R.; Gerding, V.; Donoso, C. 2007. Crecimiento de una plantación de Nothofagus nervosa durante 20 años en Valdivia. [Growth of a plantation of Nothofagus nervosa in Valdivia in a 20-year period]. Bosque. 28(2): 129-138. (In Spanish)

Rigatto, P.A.; Dedecek, R.A.; de Matos, J.L.M. 2004. Influência dos atributos do solo sobre a qualidade da madeira de Pinus taeda para produção de celulose Kraft. [Influence of soil attributes on quality of Pinus taeda wood for Kraft pulp production]. Rev Arvore 28(2): 267-273. (In Portuguese)

Rocha, S.M.G.; Vidaurre, G.B.; Pezzopane, J.E.M.; Almeida, M.N.F.; Carneiro, R.L.; Campoe, O.C.; Scolforo, H.F.; Alvares, C.A.; Neves, J.C.L.; Xavier, A.C., Figura, M. A. 2020. Influence of climatic variations on production, biomass and density of wood in eucalyptus clones of different species. For Ecol Manag 473: 118290.

Rodrigues, J.; Faix, O.; Pereira, H. 1998. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 52(1): 46-50.

Segal, L.; Creely, J.J.; Martin, Jr A.E.; Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10): 786-794.

Sepúlveda, C.A.; Stoll, A. 2003. Presencia de Nothofagus alpina (poepp. Et endl.) oerst. (fagaceae) en el borde costero de la region del Maule, Chile central. [Nothofagus alpina (poepp. et endl.) oerst. (fagaceae) in the coastal area of the Maule region, central Chile]. Gayana Bot 60(2): 132-133. (In Spanish)

Sette Junior, C.R.; Tomazello, M.; Lousada, J.L.; Lopes, D.; Laclau, J.P. 2016. Relationship between climate variables, trunk growth rate and wood density of Eucalyptus grandis W. Mill ex Maiden trees. Rev Arvore 40(2): 337-346.

Shupe, T.F.; Choong, E.T.; Yang, C.H. 1996. The effects of silvicultural treatments on the chemical composition of plantation-grown loblolly pine wood. Wood Fiber Sci 28(3): 295-300.

Skaar, C. 1988. Wood-water relations. Springer Verlag, Berlin, Germany.

Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K. 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6): 563-576.

Traoré, M.; Kaal, J.; Martínez Cortizas, A. 2018. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci Technol 52(2): 487-504.

Vieira, W.L.; Amorim, E.P.; Freitas, M.L.M.; da Silva Júnior, F.G.; Guerrini, I.A.; Rossi, M.; Longui, E.L. 2021. Effect of soil type on wood chemical constituents and calorific values of 33-year-old Corymbia citriodora. Sci For 49(132): e3681.

Wentzel, M.; Rolleri, A.; Pesenti, H.; Militz, H. 2019. Chemical analysis and cellulose crystallinity of thermally modified Eucalyptus nitens wood from open and closed reactor systems using FTIR and X-ray crystallography. Eur J Wood Prod 77(4): 517-525.




How to Cite

Wentzel, M. ., Pesenti, H. ., Droppelmann, F. ., & Rolleri, A. . (2023). Thinning wood properties of Nothofagus alpina under three different silvicultural conditions. Maderas-Cienc Tecnol, 26, 1–16.