Influence of thermal pretreatments on dimensional change and humidity sensitivity of densified spruce and poplar wood
Keywords:
Densification, dimensional stability, hygroscopicity, thermal treatment, wood materialAbstract
The effect of thermal pretreatments on the dimensional change and humidity sensitivity of densified spruce (Picea orientalis) and poplar (Populus nigra) wood were investigated. A thermal pretreatment was applied on the wood specimens at 140 °C, 160 °C, 180 °C, and 200 °C for 7 h and 9 h. Wood specimens were then compressed at ratios of 20 % and 40 % at a temperature of 150 °C. The results showed that spring-back and thickness swelling increased in all specimens (thermally pre-treated and untreated) depending on the increase in compression ratio. However, set-recovery was determined higher at 20 % compression ratio. The equilibrium moisture content values of untreated specimens and thermally pre-treated specimens at low temperatures (140 ºC and 160 ºC) were found lower than uncompressed specimens. The impact of compression ratio on equilibrium moisture content was not clear. Thermal pretreatments significantly affected the dimensional stability and hygroscopicity of densified specimens (especially poplar wood). Depending on the increase in thermal pretreatment temperature and duration, spring-back, set-recovery and thickness swelling in wood specimens decreased up to 31 %, 67 % and 62 %, respectively. In addition, equilibrium moisture content and water absorption decreased with the increase in thermal pretreatment temperature and duration. Moreover, the thermal treatment temperature was more important than duration on the investigated properties.
Downloads
References
Ayata, U.; Akcay, C.; Esteves, B. 2017. Determination of decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated scotch pine, oak and beech wood species. Maderas-Cienc Tecnol 19(3): 309-316. https://doi.org/10.4067/S0718-221X2017005000026
Aydemir, D.; Gündüz, G.; Altuntaş, E.; Ertas, M.; Şahin, H.T.; Alma, M.H. 2011. Investigating changes in the chemical constituents and dimensional stability of heattreated hornbeam and Uludağ fir wood. BioResources 6(2): 1308-1321. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_2_1308_Ayedemir_GAESA_Changes_Chem_Phys_Wood_Heat_Treat/924
Báder, M.; Bak, M.; Németh, R.; Rousek, R.; Horníček, S.; Dömény, J.; Klímek, P.; Rademacher, P.; Kudela, J.; Sandberg, D.; Neyses, B.; Kutnar, A.; Wimmer, R.; Pfriem, A. 2018. Wood densification processing for newly engineered materials. In 5th International Conference on Processing Technologies for the Forest and Bio-based Products Industries September 2018, Freising/Munich, Germany. http://ltu.diva-portal.org/smash/get/diva2:1259102/FULLTEXT01.pdf
Bekhta, P.; Niemz, P. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5): 539-546. https://doi.org/10.1515/HF.2003.080
Boonstra, M.J. 2008. A two-stage thermal modification of wood, Doctoral Thesis, Co-supervised by Ghent University, Ghent, Belgium, and Université Henry Poincaré, Nancy, France. https://biblio.ugent.be/publication/468990/file/1880699.pdf
Boonstra, M.J. 2016. Dimensional stabilization of wood and wood composites. Chapter 26. In: Lignocellulosic Fibers and Wood Handbook: Renewable Materials for Today's Environment. Belgacem, N.; Pizzi, A. (eds.). Wiley, Hoboken, NJ, USA. https://doi.org/10.1002/9781118773727.ch26
Boonstra, M.J.; Van Acker, J.; Kegel, E.; Stevens, M. 2007a. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1): 31-57. https://doi.org/10.1007/s00226-006-0087-4
Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. 2007b. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7): 679-690. https://doi.org/10.1051/forest:2007048
Budakçı, M.; Şenol, S.; Korkmaz, M. 2021. Effects of thermo-vibro-mechanic® densification on the density and swelling of pre-treated uludağ fir and black poplar wood. BioResources 16(1): 1581-1599. https://doi.org/10.15376/biores.16.1.1581-1599
Cai, J.; Yang, X.; Cai, L.; Shi, S. Q. 2013. Impact of the combination of densification and thermal modification on dimensional stability and hardness of poplar lumber. Drying Technol 31(10): 1107-1113. https://doi.org/10.1080/07373937.2013.775147
Cencin, A.; Zanetti, M.; Urso, T.; Crivellaro, A. 2021. Effects of an innovative densification process on mechanical and physical properties of beech and Norway spruce veneers. J Wood Sci 67: 15(2021). https://doi.org/10.1186/s10086-021-01948-w
Dwianto, W.; Inoue, M.; Norimoto, M. 1997. Fixation of compressive deformation of wood by heat treatment. J Jpn Wood Res Soc 43(4): 303-309. https://www.webofscience.com/wos/woscc/full-record/WOS:A1997XD65400001?SID=D3I4CwJenYn9Z1okONA
Dubey, M.K.; Pang, S.; Walker, J. 2012. Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat treatment. Holzforschung 66: 49–57. https://doi.org/10.1515/HF.2011.117
Esteves, B.; Velez, M.A.; Domingos, I.; Pereira, H. 2007. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41(3): 193-207. https://doi.org/10.1007/s00226-006-0099-0
Esteves, B.; Domingos, I.; Pereira, H. 2008. Pine wood modification by heat treatment in air. BioResources 3(1): 142-154. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_03_1_0142_Esteves_DP_PineWoodMod/173
Esteves, B.M.; Pereira, H. M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://doi.org/10.15376/biores.4.1.370-404
Fang, C.H.; Cloutier, A.; Jiang, Z.H.; He, J.Z.; Fei, B.H. 2019. Improvement of wood densification process via enhancing steam diffusion, distribution, and evaporation. BioResources 14(2): 3278-3288. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_2_3278_Fang_Improvement_Densification_Process_Steam/6721
Gabrielli, C.P.; Kamke, F.A. 2010. Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci Technol 44(1): 95–104. https://doi.org/10.1007/s00226-009-0253-6
Gao, Z.; Huang, R.; Chang, J.; Li, R.; Wu, Y. 2019. Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood. BioResources 14(1): 1718-1730.
Gérardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood—a review. Ann For Sci 73(3): 559-570. https://doi.org/10.1007/s13595-015-0531-4
González-Peña, M.M.; Hale, M.D. 2009. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 63: 385–393. https://doi.org/10.1515/HF.2009.078
Fukuta, S.; Asada, F.; Sasaki, Y. 2008. Manufacture of compressed wood fixed by phenolic resin impregnation through drilled holes. J Wood Sci 54(2): 100–106. https://doi.org/10.1007/s10086-007-0920-x
Heger, F.; Groux, M.; Girardet, F.; Welzbacher, C.; Rapp, A.O.; Navi, P. 2004. Mechanical and durability performance of THM-densified wood. Proc. Final Workshop COST Action E22 Environmental Optimization of Wood Protection Lisbon, Portugal.
Hill, C.A.S. 2006. Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons, Chichester, United Kingdom. https://doi.org/10.1002/0470021748
Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J Mater Sci 56: 6581–6614. https://doi.org/10.1007/s10853-020-05722-z
Inoue, M.; Ogata, S.; Kawai, S.; Rowell, R.M.; Norimoto, M. 1993. Fixation of compressed wood using melamine-formaldehyde resin. Wood Fiber Sci 25(4): 404-410. https://wfs.swst.org/index.php/wfs/article/view/623
Inoue, M.; Sekino, N.; Morooka, T.; Rowell, R.M.; Norimoto, M. 2008. Fixation of compressive deformation in wood by pre-steaming. J Trop For Sci 20(4): 273-281. https://www.fpl.fs.fed.us/documnts/pdf2008/fpl_2008_inoue001.pdf
International Organization for Standardization. 2014. Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 1: Determination of moisture content for physical and mechanical tests. ISO 13061-1. ISO. Geneva, Switzerland. https://www.iso.org/standard/60063.html
International Organization for Standardization. 2017. Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 15: Determination of radial and tangential swelling. ISO 13061-15. ISO. Geneva, Switzerland. https://www.iso.org/standard/60077.html
Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. 2019. Wood modification in Europe: A state-of-the-art about processes, products, applications. Firenze University Press, Florence, Italy. https://doi.org/10.36253/978-88-6453-970-6
Kariz, M.; Kuzman, M.K.; Sernek, M.; Hughes, M.; Rautkari, L.; Kamke, F.A.; Kutnar, A. 2017. Influence of temperature of thermal treatment on surface densification of spruce. Eur J Wood Prod 75(1): 113-123. https://doi.org/10.1007/s00107-016-1052-z
Kartal, S.N.; Hwang, W.J.; Imamura, Y. 2007. Water absorption of boron-treated and heat-modified wood. J Wood Sci 53(5): 454-457. https://doi.org/10.1007/s10086-007-0877-9
Kaygın, B.; Gündüz, G.; Aydemir, D. 2009. Some physical properties of heat treated paulownia (Paulownia elongata) wood. Drying Technol 27(1): 89-93. https://doi.org/10.1080/07373930802565921
Kocaefe, D.; Huang, X.; Kocaefe, Y. 2015. Dimensional stabilization of wood. Curr For Rep 1(3): 151-161. https://doi.org/10.1007/s40725-015-0017-5
Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of wood science and technology. Wood based materials, II ed. Springer, New York, U.S.A. https://doi.org/10.1007/978-3-642-87931-9
Korkut, S.; Kök, M.S.; Korkut, D.S.; Gürleyen, T. 2008. The effects of heat treatment on technological properties in red-bud maple (Acer trautvetteri Medw.) wood. Bioresour Technol 99(6): 1538-1543. https://doi.org/10.1016/j.biortech.2007.04.021
Korkut, D.S.; Guller, B. 2008. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresour Technol 99(8): 2846-2851. https://doi.org/10.1016/j.biortech.2007.06.043
Kutnar, A.; Kamke, F.A. 2012. Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci Technol 46(5): 953-964. https://doi.org/10.1007/s00226-011-0456-5
Laine, K.; Rautkari, L.; Hughes, M.; Kutnar, A. 2013. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur J Wood Prod 71(1): 17-23. https://doi.org/10.1007/s00107-012-0647-2
Laskowska, A. 2020. The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas-Cienc Tecnol 22:55-68. https://doi.org/10.4067/S0718-221X2020005000106
Lekounougou, S.; Kocaefe, D. 2014. Durability of thermally modified Pinus banksiana (Jack pine) wood against brown and white rot fungi. Int Wood Prod J 5(2): 92-97. https://doi.org/10.1179/2042645313Y.0000000057
Lykidis, C.; Kotrotsiou, K.; Tsichlakis, A. 2020. Reducing set-recovery of compressively densified poplar wood by impregnation–modification with melamine–formaldehyde resin. Wood Mater Sci Eng 15(5): 269-277. https://doi.org/10.1080/17480272.2019.1594365
Militz, H. 2002. Thermal treatment of wood: European processes and their background. In The International Research Group on Wood
Preservation February 2012, Cardiff, U.K.
Militz, H. 2005. Preface of the second european conference on wood modification, In Proceedings for the 2th European Conference on Wood Modification October 2005, Gottingen, Germany.
Morsing, N. 2000. Densification of wood - The influence of hygrothermal treatment on compression of beech perpendicular to the grain, Doctoral Thesis, Technical University of Denmark, Lyngby, Denmark. https://backend.orbit.dtu.dk/ws/portalfiles/portal/5301406/Morsing.pdf
Nairn, J.A. 2006. Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci 38(4): 576-591. https://wfs.swst.org/index.php/wfs/article/view/2
Navi, P.; Heger, F. 2004. Combined densification and thermo-hydro-mechanical processing of wood. MRS Bull 29(5): 332-336. https://doi.org/10.1557/mrs2004.100
Pelit, H. 2017. The effect of different wood varnishes on surface color properties of heat treated wood materials. J Fac For Istanbul U 67(2): 262-274. https://doi.org/10.17099/jffiu.300010
Pelit, H.; Budakçı, M.; Sönmez, A. 2016. Effects of heat post-treatment on dimensional stability and water absorption behaviours of mechanically densified Uludağ fir and black poplar woods. BioResources 11(2): 3215-3229. https://doi.org/10.15376/biores.11.2.3215-3229
Pelit, H.; Emiroglu, F. 2020. Effect of water repellents on hygroscopicity and dimensional stability of densified fir and aspen woods. Drv Ind (1): 29-40. https://doi.org/10.5552/drvind.2020.1901
Pelit, H.; Sönmez, A.; Budakçı, M. 2014. Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots pine (Pinus sylvestris L.). BioResources 9(3): 4552-4567. https://doi.org/10.15376/biores.9.3.4552-4567
Pelit, H.; Yorulmaz, R. 2019. Influence of densification on mechanical properties of thermally pretreated spruce and poplar wood. BioResources 14(4): 9739-9754. https://bioresources.cnr.ncsu.edu/resources/influence-of-densification-on-mechanical-properties-of-thermally-pretreated-spruce-and-poplar-wood/
Perçin, O.; Peker, H.; Atılgan, A. 2016. The effect of heat treatment on the some physical and mechanical properties of beech (Fagus orientalis lipsky) wood. Wood Res 61(3): 443-456. http://www.woodresearch.sk/wr/201603/10.pdf
Pleschberger, H.; Teischinger, A.; Müller, U.; Hansmann, C. 2014. Change in fracturing and colouring of solid spruce and ash wood after thermal modification. Wood Mater Sci Eng 9(2): 92-101. https://doi.org/10.1080/17480272.2014.895418
Poncsák, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40(8): 647-663. https://doi.org/10.1007/s00226-006-0082-9
Rautkari, L. 2012. Surface modification of solid wood using different techniques. Doctoral Thesis, Aalto University, Espoo, Finland.
Rautkari, L.; Properzi, M.; Pichelin, F.; Hughes, M. 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci Technol 44(4): 679–691. https://doi.org/10.1007/s00226-009-0291-0
Rowell, R.M. 2012. Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, U.S.A. https://www.taylorfrancis.com/books/mono/10.1201/b12487/handbook-wood-chemistry-wood-composites-roger-rowell
Sandberg, D.; Haller, P.; Navi, P. 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater Sci Eng 8(1): 64-88.
https://doi.org/10.1080/17480272.2012.751935
Sandberg, D.; Kutnar, A.; Mantanis, G. 2017. Wood modification technologies-a review. Iforest 10(6): 895-908. https://doi.org/10.3832/ifor2380-010
Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. 2021. Wood Modification Technologies. Principles, Sustainability, and the Need for Innovation. CRC Press, Boca Raton, U.S.A. https://www.taylorfrancis.com/books/mono/10.1201/9781351028226/wood-modification-technologies-dick-sandberg-andreja-kutnar-olov-karlsson-dennis-jones
Seborg, R.M.; Millett, M.A.; Stamm, A.J. 1956. Heat-stabilized compressed wood (Staypak), USDA Forest Service, Forest Products Laboratory, Report No: 1580, Madison, Wisconsin, U.S.A. https://www.fpl.fs.fed.us/documnts/fplr/fplr1580.pdf
Seborg, R.M.; Tarkow, H.; Stamm, A.J. 1962. Modified woods. USDA Forest Service, Forest Products Laboratory, Report No: 2192 (revised), Madison, Wisconsin, U.S.A.
Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. 2018. Impact of thermal modification on color and chemical changes of spruce and oak wood. J Wood Sci 64(4): 406-416. https://doi.org/10.1007/s10086-018-1721-0
Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. 2019. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J Build Eng 26: 100918. https://doi.org/10.1016/j.jobe.2019.100918
Song, S.; Chen, C.; Zhu, S.; Zhu, M., Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; et al. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554: 224–228. https://doi.org/10.1038/nature25476
Thompson, D.W.; Kozak, R.A.; Evans, P.D. 2005. Thermal modification of color in red alder veneer. I. Effects of temperature, heating time, and wood type. Wood Fiber Sci 37(4): 653-661. https://wfs.swst.org/index.php/wfs/article/download/1039/1039/0
Tjeerdsma, B.; Militz, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63(2): 102-111. https://doi.org/10.1007/s00107-004-0532-8
Toker, H.; Baysal, E.; Kötekli, M.; Türkoğlu, T.; Kart, Ş.; Şen, F.; Peker, H. 2016. Surface characteristics of Oriental beech and Scots pine woods heat-treated above 200°C. Wood Res 61(1): 43-54. http://www.woodresearch.sk/wr/201601/05.pdf
Torniainen, P.; Jones, D.; Sandberg, D. 2021. Colour as a quality indicator for industrially manufactured ThermoWood®. Wood Mater Sci Eng 16(4): 287-289. https://doi.org/10.1080/17480272.2021.1958920
Ünsal, O.; Büyüksarı, U.; Ayrılmış, N.; Korkut, S. 2009. Properties of wood and wood based materials subjected to thermal treatments under various conditions. In: Proceedings of International Wood Science and Engineering Conference in the Third Millennium – ICWSE June 2009, Braşov, Romania.
Wolcott, M.P.; Kasal, B.; Kamke, F.A.; Dillard, D.A. 1989. Testing small wood specimens in transverse compression. Wood Fiber Sci 21(3): 320-329. https://wfs.swst.org/index.php/wfs/article/download/966/966/0
Xu, B.H.; Yu, K.B.; Wu, H.C.; Bouchaïr, A. 2021. Mechanical properties and engineering application potential of the densified poplar. Wood Mater Sci Eng Published online: 13 May 2021, 1-9. https://doi.org/10.1080/17480272.2021.1924857
Yalçın, M.; Şahin, H.İ. 2015. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood. Maderas-Cienc Tecnol 17(2): 435-446. https://doi.org/10.4067/S0718-221X2015005000040
Yıldız, S.; Gezer, E.D.; Yıdız, Ü.C. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41(12): 1762-1766. https://doi.org/10.1016/j.buildenv.2005.07.017
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.