Influence of thermal pretreatments on dimensional change and humidity sensitivity of densified spruce and poplar wood

Authors

  • Huseyin Pelit
  • Ramazan Yorulmaz

DOI:

https://doi.org/10.22320/s0718221x/2024.09

Keywords:

Densification, dimensional stability, hygroscopicity, thermal treatment, wood material

Abstract

Densification modification is an effective method to improve many properties of wood. However, den- sified wood is sensitive to humidity and is not dimensionally stable. The effect of thermal pretreatments on the dimensional change and humidity sensitivity of densified Picea orientalis (spruce) and Populus nigra (poplar) wood were investigated. A thermal pre-treatment was applied on the wood specimens at 140 °C,  160 °C, 180 °C, and 200 °C for 7 h and 9 h. Wood  specimens were then compressed at ratios of 20 % and  40 % at a temperature of 150 °C. The results showed that spring-back and thickness swelling increased in all specimens (thermally pre-treated and untreated) depending on the increase in compression ratio.

However, set recovery was determined higherat 20 % compression ratio.The equilibrium moisture content values of untreated specimens and thermally pre-treated specimens at low temperatures (140 ºC and 160 ºC) were found lower than uncompressed specimens. The impact of compression ratio on equilibrium moisture content was not clear. Thermal pretreatments significantly affected the dimensional stability and hygroscopicity of densified specimens (especially poplar wood). Depending on the increase in thermal pre-treatment temperature and du- ration, spring-back, set-recovery and thickness swelling in wood specimens decreased up to 31 %, 67 % and 62 %, respectively. In addition, equilibrium moisture content and water absorption decreased with the increase in thermal pre-treatment temperature and duration. Moreover, the thermal treatment temperature was more important than duration on the investigated properties.

Downloads

Download data is not yet available.

References

Ayata, U.; Akcay, C.; Esteves, B. 2017. Determination of decay resistance against Pleurotus ostreatus and Coniophora puteana fungus of heat-treated scotch pine, oak and beech wood species. Maderas. Ciencia y tecnología 19(3): 309-316. https://dx.doi.org/10.4067/S0718-221X2017005000026

Aydemir, D.; Gündüz, G.; Altuntaş, E.; Ertas, M.; Şahin, H.T.; Hakki Alma, M. 2011. Investigating changes in the chemical constituents and dimensional stability of heattreated hornbeam and Uludağ fir wood. BioResources 6(2): 1308-1321. https://dx.doi.org/10.15376/biores.6.2.1308-1321

Báder, M.; Bak, M.; Németh, R.; Rousek, R.; Horníček, S.; Dömény, J.; Klímek, P.; Rademacher, P.; Kudela, J.; Sandberg, D.; Neyses, B.; Kutnar, A.; Wimmer, R.; Pfriem, A. 2018. Wood densification processing for newly engineered materials. In 5th International Conference on Processing Technologies for the Forest and Bio-based Products Industries September 2018, Freising/Munich, Germany. http:/ltu.diva-portal.org/smash/get/diva2:1259102/FULLTEXT01.pdf

Bekhta, P.; Niemz, P. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5): 539-546. https://dx.doi.org/10.1515/HF.2003.080

Boonstra M. J. 2008. A Two-Stage Thermal Modification of Wood. PhD Thesis, Co-supervised by Ghent University and Université Henry Poincaré. 297p. https://biblio.ugent.be/publication/468990/file/1880699.pdf

Boonstra, M.J. 2016. Dimensional Stabilization of Wood and Wood Composites. Chapter 26. In: Ligno- cellulosic Fibers and Wood Handbook: Renewable Materials for Today’s Environment. Belgacem, N.; Pizzi, A. (eds.). Wiley: Hoboken, NJ, pp. 629-655. https://doi.org/10.1002/9781118773727.ch26

Boonstra, M.J.; Van Acker, J.; Kegel, E.; Stevens, M. 2007a. Optimisation of a two-stage heat treatment process: durability aspects. Wood Science and Technology 41(1): 31-57. https://dx.doi.org/10.1007/s00226- 006-0087-4

Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. 2007b. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64(7): 679-690. https://dx.doi.org/10.1051/forest:2007048

Budakçı, M.; Şenol, S.; Korkmaz, M. 2021. Effects of thermo-vibro-mechanic® densification on the density and swelling of pre-treated uludağ fir and black poplar wood. BioResources 16(1): 1581-1599. https://dx.doi.org/10.15376/biores.16.1.1581-1599

Cai, J.; Yang, X.; Cai, L.; Shi, S. Q. 2013. Impact of the combination of densification and thermal modification on dimensional stability and hardness of poplar lumber. Drying Technology 31(10): 1107-1113. https://dx.doi.org/10.1080/07373937.2013.775147

Cencin, A.; Zanetti, M.; Urso, T.; Crivellaro, A. 2021. Effects of an innovative densification process on mechanical and physical properties of beech and Norway spruce veneers. Journal of Wood Science 67. e15. https://dx.doi.org/10.1186/s10086-021-01948-w

Dwianto, W.; Inoue, M.; Norimoto, M. 1997. Fixation of compressive deformation of wood by heat treatment. Journal of the Japan Wood Research Society 43(4): 303-309. https://www.webofscience.com/wos/ woscc/full-record/WOS:A1997XD65400001?SID=D3I4CwJenYn9Z1okONA

Dubey, M.K.; Pang, S.; Walker, J. 2012. Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat treatment. Holzforschung 66(1): 49-57. https://dx.doi.org/10.1515/HF.2011.117

Esteves, B.; Velez, M.A.; Domingos, I.; Pereira, H. 2007. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 41(3): 193-207. https://dx.doi.org/10.1007/s00226-006-0099-0

Esteves, B.; Domingos, I.; Pereira, H. 2008. Pine wood modification by heat treatment in air. BioRe- sources 3(1): 142-154. https://dx.doi.org/10.15376/biores.3.1.142-154

Esteves, B.M.; Pereira, H. M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://dx.doi.org/10.15376/biores.4.1.370-404

Fang, C.H.; Cloutier, A.; Jiang, Z.H.; He, J.Z.; Fei, B.H. 2019. Improvement of wood densificati- on process via enhancing steam diffusion, distribution, and evaporation. BioResources 14(2): 3278-3288. https://dx.doi.org/10.15376/biores.14.2.3278-3288

Fukuta, S.; Asada, F.; Sasaki, Y. 2008. Manufacture of compressed wood fixed by phenolic resin imp- regnation through drilled holes. Journal of Wood Science 54(2): 100-106. https://dx.doi.org/10.1007/s10086- 007-0920-x

Gabrielli, C.P.; Kamke, F.A. 2010. Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood Science and Technology 44(1): 95-104. https://dx.doi.org/10.1007/s00226-009- 0253-6

Gao, Z.; Huang, R.; Chang, J.; Li, R.; Wu, Y. 2019. Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood. BioResources 14(1): 1718-1730. https://dx.doi.org/10.15376/biores.14.1.1718-1730

Gérardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood-a review. Annals of Forest Science 73(3): 559-570. https://dx.doi.org/10.1007/s13595-015-0531-4

González-Peña, M.M.; Hale, M.D. 2009. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 63: 385-393. https://dx.doi.org/10.1515/HF.2009.078

Heger, F.; Groux, M.; Girardet, F.; Welzbacher, C.; Rapp, A.O.; Navi, P. 2004. Mechanical and dura- bility performance of THM-densified wood. In Final Workshop COST Action E22. Environmental Optimiza- tion of Wood Protection: Lisbon, Portugal. 22-23 March 2004, pp. 1-10.

Hill, C.A.S. 2006. Wood modification: Chemical, thermal and other processes. John Wiley & Sons: Chic- hester, United Kingdom. ISBN 9780470021729. 239p. https://doi.org/10.1002/0470021748

Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood-A review: Chemical changes and hygroscopicity. Journal of Materials Science 56: 6581-6614. https://dx.doi.org/10.1007/s10853-020-05722-z

Inoue, M.; Ogata, S.; Kawai, S.; Rowell, R.M.; Norimoto, M. 1993. Fixation of compressed wood using melamine-formaldehyde resin. Wood and Fiber Science 25(4): 404-410. https://wfs.swst.org/index.php/ wfs/article/view/623

Inoue, M.; Sekino, N.; Morooka, T.; Rowell, R.M.; Norimoto, M. 2008. Fixation of comp- ressive deformation in wood by pre-steaming. Journal of Tropical Forest Science 20(4): 273-281. https://www.fpl.fs.usda.gov/documnts/pdf2008/fpl_2008_inoue001.pdf

ISO. 2014. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. ISO 13061-1. ISSO: Geneva, Switzerland.

ISO. 2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 15: Determination of radial and tangential swelling. ISO 13061-15. ISSO: Geneva, Switzerland.

Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. 2019. Wood modification in Europe: A state-of-the-art about processes, products, applications. Firenze University Press: Florence, Italy. eISBN: 978-88-6453-970-6. 123p. https://doi.org/10.36253/978-88-6453-970-6

Kariz, M.; Kuzman, M.K.; Sernek, M.; Hughes, M.; Rautkari, L.; Kamke, F.A.; Kutnar, A. 2017. Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products 75(1): 113-123. https://dx.doi.org/10.1007/s00107-016-1052-z

Kartal, S.N.; Hwang, W.J.; Imamura, Y. 2007. Water absorption of boron-treated and heat-modified wood. Journal of Wood Science 53(5): 454-457. https://dx.doi.org/10.1007/s10086-007-0877-9

Kaygın, B.; Gündüz, G.; Aydemir, D. 2009. Some physical properties of heat treated paulownia (Pau- lownia elongata) wood. Drying Technology 27(1): 89-93. https://dx.doi.org/10.1080/07373930802565921

Kocaefe, D.; Huang, X.; Kocaefe, Y. 2015. Dimensional stabilization of wood. Current Forestry Reports 1(3): 151-161. https://dx.doi.org/10.1007/s40725-015-0017-5

Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of wood science and technolo- gy: Wood based materials. 2st edition. Springer: Berlin, Heidelberg. ISBN 978-3-642-87933-3. 703p. https://doi.org/10.1007/978-3-642-87931-9

Korkut, S.; Kök, M.S.; Korkut, D.S.; Gürleyen, T. 2008. The effects of heat treatment on technologi- cal properties in red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology 99(6): 1538-1543. https://dx.doi.org/10.1016/j.biortech.2007.04.021

Korkut, D.S.; Guller, B. 2008. The effects of heat treatment on physical properties and surface rou- ghness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology 99(8): 2846-2851. https://dx.doi.org/10.1016/j.biortech.2007.06.043

Kutnar, A.; Kamke, F.A. 2012. Influence of temperature and steam environment on set recovery of com- pressive deformation of wood. Wood Science and Technology 46(5): 953-964. https://dx.doi.org/10.1007/ s00226-011-0456-5

Laine, K.; Rautkari, L.; Hughes, M.; Kutnar, A. 2013. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. European Journal of Wood and Wood Products 71(1): 17-23. https://dx.doi.org/10.1007/s00107-012-0647-2

Laskowska, A. 2020. The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas. Ciencia y tecnología 22:55-68. https://dx.doi.org/10.4067/S0718- 221X2020005000106

Lekounougou, S.; Kocaefe, D. 2014. Durability of thermally modified Pinus banksiana (Jack pine) wood against brown and white rot fungi. International Wood Products Journal 5(2): 92-97. https://dx.doi.org/10.11 79/2042645313Y.0000000057

Lykidis, C.; Kotrotsiou, K.; Tsichlakis, A. 2020. Reducing set-recovery of compressively densified pop- lar wood by impregnation-modification with melamine-formaldehyde resin. Wood Material Science & Engi- neering 15(5): 269-277. https://dx.doi.org/10.1080/17480272.2019.1594365

Militz, H. 2002. Thermal treatment of wood: European processes and their background. In Proceedings IRG Annual Meeting, IRG/WP 02-40241. The International Research Group on Wood Preservation Cardiff, UK. 12-17 May 2002. https://www.irg-wp.com/irgdocs/details.php?f6f6ffad-b3c3-433d-aaaa-647a154fd4c7

Morsing N. 2000. Densification of Wood - The Influence of Hygrothermal Treatment on Compression of Beech Perpendicular to the Grain. PhD Thesis, Technical University of Denmark. 138p. https://backend.orbit. dtu.dk/ws/portalfiles/portal/5301406/Morsing.pdf

Nairn, J.A. 2006. Numerical simulations of transverse compression and densification in wood. Wood and Fiber Science 38(4): 576-591. https://wfs.swst.org/index.php/wfs/article/view/2

Navi, P.; Heger, F. 2004. Combined densification and thermo-hydro-mechanical processing of wood. MRS Bulletin 29(5): 332-336. https://dx.doi.org/10.1557/mrs2004.100

Pelit, H. 2017. The effect of different wood varnishes on surface color properties of heat treated wood materials. Journal of the Faculty of Forestry Istanbul University 67(2): 262-274. https://dx.doi.org/10.17099/ jffiu.300010

Pelit, H.; Budakçı, M.; Sönmez, A. 2016. Effects of heat post-treatment on dimensional stability and wa- ter absorption behaviours of mechanically densified Uludağ fir and black poplar woods. BioResources 11(2): 3215-3229. https://dx.doi.org/10.15376/biores.11.2.3215-3229

Pelit, H.; Emiroglu, F. 2020. Effect of water repellents on hygroscopicity and dimensional stability of densified fir and aspen woods. Drvna Industrija 71(1): 29-40. https://dx.doi.org/10.5552/drvind.2020.1901

Pelit, H.; Sönmez, A.; Budakçı, M. 2014. Effects of ThermoWood® process combined with thermo-mec- hanical densification on some physical properties of Scots pine (Pinus sylvestris L.). BioResources 9(3): 4552- 4567. https://dx.doi.org/10.15376/biores.9.3.4552-4567

Pelit, H.; Yorulmaz, R. 2019. Influence of densification on mechanical properties of thermally pretreated spruce and poplar wood. BioResources 14(4): 9739-9754. https://dx.doi.org/10.15376/biores.14.4.9739-9754

Perçin, O.; Peker, H.; Atılgan, A. 2016. The effect of heat treatment on the some physical and mechanical properties of beech (Fagus orientalis lipsky) wood. Wood Research 61(3): 443-456. http://www.woodresearch. sk/wr/201603/10.pdf

Pleschberger, H.; Teischinger, A.; Müller, U.; Hansmann, C. 2014. Change in fracturing and colouring of solid spruce and ash wood after thermal modification. Wood Material Science & Engineering 9(2): 92-101. https://dx.doi.org/10.1080/17480272.2014.895418

Poncsák, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology 40(8): 647-663. https://dx.doi.org/10.1007/s00226-006-0082-9

Rautkari L. 2012. Surface Modification of Solid Wood Using Different Techniques. PhD Thesis, Aalto University. 126p. https:/aaltodoc.aalto.fi/bitstream/handle/123456789/5259/isbn9789526044651.pdf?sequ- ence=1&isAllowed=y

Rautkari, L.; Properzi, M.; Pichelin, F.; Hughes, M. 2010. Properties and set-recovery of sur- face densified Norway spruce and European beech. Wood Science and Technology 44(4): 679-691. https://dx.doi.org/10.1007/s00226-009-0291-0

Rowell, R.M. 2012. Handbook of wood chemistry and wood composites. 2st edition. CRC Press: Boca Raton, USA. ISBN 978-0-429-10909-6. 703p. https://doi.org/10.1201/b12487

Sandberg, D.; Haller, P.; Navi, P. 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science & Engineering 8(1): 64-88. https://dx.doi.org/10.1080/17480272.2012.751935

Sandberg, D.; Kutnar, A.; Mantanis, G. 2017. Wood modification technologies-a review. iForest - Bio- geosciences and Forestry 10(6): 895-908. https://dx.doi.org/10.3832/ifor2380-010

Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. 2021. Wood modification technologies: Principles, sustainability, and the need for innovation. 1st edition. CRC Press: Boca Raton, USA. ISBN 978-1-351-02822- 6. 442p. https://doi.org/10.1201/9781351028226

Seborg, R.M.; Millett, M.A.; Stamm, A.J. 1956. Heat-stabilized compressed wood (Staypak). Report No: 1580. USDA Forest Service, Forest Products Laboratory: Madison, Wisconsin, U.S.A. https://www.fpl. fs.usda.gov/documnts/fplr/fplr1580.pdf

Seborg, R.M.; Tarkow, H.; Stamm, A.J. 1962. Modified woods. Report No: 2192 (revised). USDA Fo- rest Service, Forest Products Laboratory: Madison, Wisconsin, USA.

Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. 2018. Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of Wood Science 64(4): 406-416. https://dx.doi.org/10.1007/s10086-018-1721-0

Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. 2019. Color change and emission of volatile orga- nic compounds from Scots pine exposed to heat and vacuum-heat treatment. Journal of Building Engineering 26: 100918. https://dx.doi.org/10.1016/j.jobe.2019.100918

Song, S.; Chen, C.; Zhu, S.; Zhu, M., Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N.; Yao, Y.; Gong, A.; Leiste, U.; Bruck, H.; Zhu, J.Y.; Vellore, A.; Li, H.; Minus, M.; Jia, Z.; Martini, A.; Li, T.; Hu, L. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554: 224-228. https://dx.doi.org/10.1038/nature25476

Thompson, D.W.; Kozak, R.A.; Evans, P.D. 2005. Thermal modification of color in red alder ve- neer. I. Effects of temperature, heating time, and wood type. Wood and Fiber Science 37(4): 653-661. https://wfs.swst.org/index.php/wfs/article/download/1039/1039/0

Tjeerdsma, B.; Militz, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analy- sis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff 63(2): 102-111. https://dx.doi.org/10.1007/s00107-004-0532-8

Toker, H.; Baysal, E.; Kötekli, M.; Türkoğlu, T.; Kart, Ş.; Şen, F.; Peker, H. 2016. Surface chara- cteristics of Oriental beech and Scots pine woods heat-treated above 200°C. Wood Research 61(1): 43-54. http://www.woodresearch.sk/wr/201601/05.pdf

Torniainen, P.; Jones, D.; Sandberg, D. 2021. Colour as a quality indicator for industrially manufactured ThermoWood®. Wood Material Science & Engineering 16(4): 287-289. https://dx.doi.org/10.1080/17480272.2021.1958920

Ünsal, O.; Büyüksarı, U.; Ayrılmış, N.; Korkut, S. 2009. Properties of wood and wood based materials subjected to thermal treatments under various conditions. In Proceedings of International Wood Science and Engineering Conference in the Third Millennium – ICWSE, Braşov, Romania, 04-06 June 2009, pp. 1-7.

Wolcott, M.P.; Kasal, B.; Kamke, F.A.; Dillard, D.A. 1989. Testing small wood specimens in transver- se compression. Wood and Fiber Science 21(3): 320-329. https://wfs.swst.org/index.php/wfs/article/downlo- ad/1226/1226/0

Xu, B.H.; Yu, K.B.; Wu, H.C.; Bouchaïr, A. 2021. Mechanical properties and engineering application potential of the densified poplar. Wood Material Science & Engineering 17(6): 659-667. https://dx.doi.org/10.1080/17480272.2021.1924857

Yalçın, M.; Şahin, H.İ. 2015. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood. Maderas. Ciencia y tecnología 17(2): 435-446. https://dx.doi.org/10.4067/S0718- 221X2015005000040

Yıldız, S.; Gezer, E.D.; Yıdız, Ü.C. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41(12): 1762-1766. https://dx.doi.org/10.1016/j.buildenv.2005.07.017

Downloads

Published

2023-09-04

How to Cite

Pelit, H. ., & Yorulmaz, R. . (2023). Influence of thermal pretreatments on dimensional change and humidity sensitivity of densified spruce and poplar wood. Maderas. Ciencia Y Tecnología, 26, 1–16. https://doi.org/10.22320/s0718221x/2024.09

Issue

Section

Article