Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights

Authors

  • Sergio Andre Arango-Perez
  • Héctor Enrique Gonzales-Mora
  • Silvia Patricia Ponce-Alvarez
  • Abel Aurelio Gutarra-Espinoza
  • Aldo Joao Cárdenas-Oscanoa

Keywords:

Bolaina blanca, cellulose nanofibers, polimerization degree, Guazuma crinita, pulp treatment

Abstract

This study evaluated cellulose nanofibers from bolaina blanca wood (Guazuma crinita) obtained at different heights of the longitudinal axis of the shaft of trees from a three-and-a-half-year-old plantation. The wood was subjected to pulping, bleaching and subsequent mechanical milling using a Changsha Samy XYQM-2L planetary ball mill to obtain cellulose nanofibers. The product was characterised using analytical techniques: scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy. Additionally, the degree of polymerisation was determined. The effect of longitudinal position on cellulose nanofibers characteristics was evaluated by comparing means using ANOVA and Kruskal–Wallis statistical tests. The yield of cellulose nanofibers production from the high, middle and basal sections was 32,1 %, 33,6 % and 31 %, respectively. The obtained cellulose nanofibers exhibited a significantly larger diameter for the high zone (84 nm) compared with the middle (75 nm) and basal (69 nm) zones; the length remained above the micrometre range. With respect to degree of polymerisation, a decrease was evidenced with respect to the increase in shaft height; the basal zone exhibited a degree of polymerisation of 300, a significantly higher value than the middle and high zones, which exhibited degree of polymerisation of 249 and 211, respectively. The product showed typical cellulose type I polymorphism and crystallinity indexes of 76 %, 93 % and 96 % for the high, middle and basal sections, respectively. Regarding the thermostability of cellulose nanofibers, the maximum degradation rate of cellulose nanofibers occurred between 335 °C and 341 °C, with cellulose nanofibers from the basal area being the most stable. The adsorption of the methylene blue dye on cellulose nanofibers was evaluated; an efficiency > 60 % was found.

Downloads

Download data is not yet available.

References

Ahmad, A.; Alrozi, R. 2010. Optimization of preparation conditions for Mangosteen peel-based activated carbons for the removal of Remazol brilliant blue R using response surface methodology. Chem Eng J 165(3): 883-890. https://doi.org/10.1016/j.cej.2010.10.049

American Society for Testing and Materials. 2015. ASTM D7582-15. Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. ASTM International, West Conshohocken, Pensilvania, United States. https://www.astm.org/d7582-12.html

Bajpai, P. 2018. Chapter 12. Pulping Fundamentals. In: Handbook of pulp and paper (Third Ed.). Elsevier. https://doi.org/10.1016/B978-0-12-814240-0.00012-4

Beeckman, H. 2016. Wood anatomy and trait-based ecology. IAWA J 37(2): 127-151. https://doi.org/10.1163/22941932-20160127

Borjesson, M.; Westman, G. 2015. Chapter 7. Crystalline nanocellulose-preparation, modification and properties. In: Cellulose - Fundamental Aspects and Current Trends. IntechOpen. http://dx.doi.org/10.5772/61899

Campano, C.; Balea, A.; Blanco, A.; Negro, C. 2016. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1): 57-91. https://doi.org/10.1007/s10570-015-0802-0

Carballo, L.; Orea, U.; Cordero, E. 2004. Composición química de tres maderas en la provincia de Pinar Del Río, CUBA a tres alturas del fuste comercial, Parte 4: Estudio comparativo de la composición química. Chapingo 10(2): 77-81. https://revistas.chapingo.mx/forestales/?section=articles&subsec=issues&numero=30&articulo=414 (In Spanish)

Césare, M.; Hilario, F.; Callupe, N.; Cruz, L.; Caller, J., Gonzales, H. 2019. Caracterización química Y física del bambú. Av Cien Ing 10(4): 1-13. https://www.executivebs.org/publishing.cl/aci/2019/Vol10/Nro4/1-ACI1336-19-full.pdf (In Spanish)

Cipra Rodriguez, J.A.; Gonzales Mora, H.E.; Cárdenas Oscanoa, A.J. 2022. Characterization of MDF produced with bolaina (Guazuma crinita Mart.) wood residues from plantation. Madera Bosques 28(3): e2832433. https://doi.org/10.21829/myb.2022.2832433

Córdova, A.; Cárdenas, A.; Gonzáles, H. 2020. Caracterización física y mecánica de compuestos de Guazuma crinita Mart. a base de polipropileno virgen. Rev Mex Cienc For 11(57): 1-28. https://doi.org/10.29298/rmcf.v11i57.621 (In Spanish)

Elanthikkal, S.; Gopalakrishnapanicker, U.; Varghese, S.; Guthrie, J.T. 2010. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohyd Polym 80(3): 852-859. https://doi.org/10.1016/j.carbpol.2009.12.043

Fukuzumi, H.; Saito, T.; Isogai, A. 2013. Influence of TEMPO- oxidized cellulose nanofibril length on film properties. Carbohyd Polym 93: 172-177. https://doi.org/10.1016/j.carbpol.2012.04.069

Habibi, Y. 2014. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5): 1519-1542. https://doi.org/10.1039/C3CS60204D

Herrera, M. 2018. Obtención de nanocelulosa a partir de celulosa de puntas de abacá. Engineering thesis. Escuela Politécnica Nacional. Quito, Ecuador. https://bibdigital.epn.edu.ec/handle/15000/19544 (In Spanish)

Honorato, A.; Colotl, G.; Apolinar, F.; Aburto, J. 2015. Principales componentes químicos de la madera de Ceiba pentandra, Hevea brasiliensis y Ochroma pyramidale. Maderas Bosques 21(2): 131-146. https://doi.org/10.21829/myb.2015.212450 (In spanish)

Hospodarova, V.; Singovszka, E.; Stevulova, N. 2018. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am J Anal Chem 9(6): 303-310. https://doi.org/10.4236/ajac.2018.96023

Hu, C.; Zhao, Y.; Li, K.; Zhu, J.Y.; Gleisner, R. 2015. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69(8): 993-1000. https://doi.org/10.1515/hf-2014-0219

International Association of Wood Anatomists. IAWA. 1989. IAWA list of microscopic features for hardwood identification with an appendix on non-anatomical information. Wheeler, E.A.; Baas, P.; Gasson, P.E. (Eds.). Published for the International Association of Wood Anatomists at the National Herbarium of the Netherlands, Leiden. IAWA J 10(3): 219-332. https://www.iawa-website.org/uploads/soft/Abstracts/IAWA%20list%20of%20microscopic%20features%20for%20hardwood%20identification.pdf

Instituto Brasileiro do Meio Ambiente e Dos Recursos Naturais Renovaveis. IBAMA. 1991. Normas de procedimentos em estudos do anatomía do madeira: I. Angiospermae. 19 p. https://lpf.florestal.gov.br/pt-br/publicacoes-tecnicas-do-lpf/72-normas-de-procedimentos-em-estudos-de-anatomia-de-madeira-i-angiospermae-ii-gimnospermae (In Portuguese)

Johar, N.; Ahmad, I.; Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1): 93-99. https://doi.org/10.1016/j.indcrop.2011.12.016

Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. 2017. Methods for extraction of nanocellulose from Various Sources. Chapter 1. In: Handbook of nanocellulose and cellulose Nanocomposites. Wiley-VCH. https://doi.org/10.1002/9783527689972.ch1

Katahira, R.; Elder, T.J.; Beckham, G.T. 2018. Brief introduction to lignin structure. Chapter 1. In: Lignin Valorization: Emerging Approaches. Beckham, G.T. (Ed.). Energy and Environment Series No. 19. 1-20. The Royal Society of Chemistry. https://doi.org/10.1039/9781788010351-00001

Keplinger, T.; Wang, X.; Burgert, I. 2019. Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J Mater Chem A 7: 2981-2992. https://doi.org/10.1039/c8ta10711d

Kumar, A.; Negi, Y.S.; Choudhary, V.; Bhardwaj, N.K. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1): 1-8. https://doi.org/10.12691/jmpc-2-1-1

Larkin, P.J. 2018. IR and Raman Spectra–Structure Correlations: Characteristic Group Frequencies. Chapter 6. In: Infrared and Raman spectroscopy: principles and spectral interpretation. Second Ed. 85-134p. Elsevier International Publishing. https://doi.org/10.1016/B978-0-12-804162-8.00006-9

Lee, K.Y.; Tang, M.; Williams, C.K.; Bismarck, A. 2012. Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos Sci Tecnol 72(14): 1646–1650. https://doi.org/10.1016/j.compscitech.2012.07.003

Lermen, A.M.; Fronza, C.S.; Diel, J.C.; Schein, D.; Clerici, N.J.; Guimarães, R.E.; Boligon, S.D.; Scher, A.C. 2021. A utilização de resíduos agroindustriais para adsorção do corante azul de metileno: uma breve revisão. BASR 5(1): 273-288. https://doi.org/10.34115/basrv5n1-017 (In Portuguese)

Malpartida, I. 2010. Determinación de la composición química de la especie bolaina blanca (Guazuma crinita Mart.) procedente del sector cadena- Tingo María. Engineering thesis, Universidad Nacional Agraria de la Selva. Tingo María, Perú. http://repositorio.unas.edu.pe/bitstream/handle/UNAS/556/T.FRS-159.pdf?sequence=1&isAllowed=y (In Spanish)

Mandal, A.; Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3): 1291-1299. https://doi.org/10.1016/j.carbpol.2011.06.030

Manzano, D. 2021. Extracción de celulosa a partir de la especie Calamagrostis intermedia para la preparación de compuestos semisintéticos, Master Thesis, Universidad Técnica de Ambato. Ambato, Ecuador. https://repositorio.uta.edu.ec/jspui/handle/123456789/32958 (In Spanish)

Megashah, L.; Ariffin, H.; Zakaria, M.; Hassan, M.; Andou, A.; Padzil, F. 2020. Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose 27(13): 7417-7429. https://doi.org/10.1007/s10570-020-03296-2

Miguel, M.; Iwakiri, S.; Trianoski, R.; Gonzales, H.; Miguel, C. 2019. Producción de tableros de partículas con bolaina (Guazuma crinita Mart.) procedente de una plantación de cuatro años. Braz Wood Sci 10(2): 197-204. https://doi.org/10.12953/2177-6830/rcm.v10n3p197-204 (In Spanish)

Siddiqui, N.; Mills, R.; Gardner, D.; Bousfield, D. 2011. Production and Characterization of Cellulose Nanofibers from Wood Pulp. J Adhes Sci Technol 25(6-7): 709-721. https://doi.org/10.1163/016942410X525975

Oancea, A.; Grasset, O.; Le Menn, E.; Bollengier, O.; Bezacier, L.; Le Mouelic, S.; Tobie, G. 2012. Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus 221(2): 900-910. https://doi.org/10.1016/j.icarus.2012.09.020

Ozen, E.; Yildirim, N.; Dalkilic, B.; Ergun, M. 2021. Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas-Cienc Tecnol (23): 26, 1-10. https://dx.doi.org/10.4067/s0718-221x2021000100426

Rangabhashiyam, S.; Anu, N.; Giri, M.; Selvaraju, N. 2014. Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng 2(1): 398-414. https://doi.org/10.1016/j.jece.2014.01.014

Rodríguez, R.; Ramírez, A.; Palacios, H.; Fuentes, F.; Silva, J., Saucedo, A. 2015. Características anatómicas, físico-mecánicas y de maquinado de la madera de mezquite (Prosopis velutina Wooton). Rev Mex Cienc For 6(28): 156-173. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322015000200011 (In Spanish).

Ponce, S.; Chavarria, M.; Norabuena, F.; Chumpitaz, D.; Gutarra, A. 2020. Cellulose microfibres obtained from agro-industrial Tara waste for dye adsorption in water. Water Air Soil Pollut 231: 518. https://doi.org/10.1007/s11270-020-04889-0

Ramesh, S.; Radhakrishnan, P. 2019. Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Appl Surf Sci 484: 1274-1281. https://doi.org/10.1016/j.apsusc.2019.04.003

Revilla, J. 2015. Viabilidad económica de plantaciones demostrativas de Bolaina blanca (Guazuma crinita C. Mart.) en la cuenca del rio Aguaytía, Ucayali -Perú. Master Thesis, Escuela de Posgrado, Universidad Nacional Agraria la Molina. Lima, Perú http://repositorio.lamolina.edu.pe/handle/20.500.12996/2119 (In Spanish)

Rigg, P. 2018. Efecto de la adición de micro-nanocelulosa cristalina en adhesivos y su aplicación en aglomerados de madera de especies forestales tropicales. Master Thesis, Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica. Cartago, Costa Rica.

https://repositoriotec.tec.ac.cr/bitstream/handle/2238/9783/efecto_adición_micronanocelulosa_cristalina_adhesivos.pdf?sequence=1&isAllowed=y (In Spanish)

Segal, L.; Creely, J.; Martin, A.; Conrad, C. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10): 786-764. https://doi.org/10.1177/004051755902901003

Singh, K.; Matsagar, B.; Dhepe, P. 2021. Determination of alpha-, beta-and gamma-cellulose in bagasse and wheat Straw: lignin recovery, characterization and depolymerization. Clean Technol Environ Policy 19: 23-29. https://doi.org/10.21203/rs.3.rs-193157/v1

Siró, I.; Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3): 459–494. https://doi.org/10.1007/s10570-010-9405-y

Technical Association of the Pulp and Paper Industries. 2008. Viscosity of pulp (capillary viscometer method). TAPPI T230 om-08. The

Technological Association of the pulp and paper Industry. Atlanta, GA, USA. https://webstore.ansi.org/Standards/TAPPI/230om08

Technical Association of the Pulp and Paper Industries. 2007. Solvent extractives of wood and Pulp. TAPPI T 204 om. The Technological Association of the pulp and paper Industry. Atlanta, GA. USA. https://www.tappi.org/content/sarg/t204.pdf

Technical Association of the Pulp and Paper Industries. 1998. Acid-insoluble lignin in wood and Pulp. TAPPI T 222 om. The Technological Association of the pulp and paper Industry. Atlanta, GA. USA. https://www.tappi.org/content/SARG/T222.pdf

Technical Association of the Pulp and Paper Industries. 1993a. Ash in wood, pulp, paper and paperboard: combustion at 525°C. TAPPI T 211 om. The Technological Association of the pulp and paper Industry. Atlanta, GA. USA. https://www.tappi.org/content/sarg/t211.pdf

Technical Association of the Pulp and Paper Industries. 1993b. Kappa number of pulp. TAPPI T 236 om. The Technological Association of the pulp and paper Industry. Atlanta, GA, USA. https://tappi.micronexx.com/CD/TESTMETHODS/T236.pdf

Tárres, J.A. 2017. Endo-β-1,4-glucanasa para la fabricación de micro/nanocelulosa: propiedades y aplicaciones. Doctoral thesis, Universitat de Girona. Girona, España. http://www.tdx.cat/handle/10803/456211 (In Spanish)

Trache, D.; Tarchoun, A.; Derradji, M.; Hamidon, T.; Masruchin, N.; Brosse, N.; Hussin, M. 2020. Nanocellulose: from fundamentals to advanced applications. Front Chem 8: 392. https://doi.org/10.3389/fchem.2020.00392

Yildirim, N.; Shaler, S. 2017. A Study on Thermal and Nanomechanical Performance of Cellulose Nanomaterials (CNs). Materials 10: 718. https://doi.org/10.3390/ma10070718

Zaki, J.; Muhammed, S.; Shafie, A.; Wan, W. 2012. Chemical properties of juvenile latex timber clone rubberwood trees. MJAS 16(3): 228-234. http://mjas.analis.com.my/wp-content/uploads/2018/11/Junaiza.pdf

Downloads

Published

2023-09-28

How to Cite

Arango-Perez, S. A. ., Gonzales-Mora, H. E. ., Ponce-Alvarez, S. P. ., Gutarra-Espinoza, A. A. ., & Cárdenas-Oscanoa, A. J. . (2023). Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights. Maderas-Cienc Tecnol, 26. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/6111

Issue

Section

Article