Spruce chips stabilization in wood-cement materials: Effect of matrix composition
Keywords:
Density, silicate matrix, spruce chips, swelling, wood-cement compositeAbstract
The paper presents research focused on the behaviour of wood-cement composites with a modified matrix. This matrix has an impact on the stabilization of the spruce wood content. Silicate matrix based on Portland and blended cement was modified by finely ground thermal power plant slag (TPPS) and limestone (LS). Four types of wood-cement composite were subjected to water immersion tests for 28 days. During water immersion, both swelling in thickness and mass changes were analysed. The amount of sugars and pH in leachate were determined after 7 day intervals. Mechanical properties and microstructures were analysed before and after water immersion. Different behaviour with regard to spruce chips stabilization was proved in dependence of wood-cement matrix modification. Differences in thickness, swelling and sugar leach indirectly indicate the influence of the wood-cement composites matrix composition on the stabilization of spruce chips contained in this matrix. Boards with the matrix modified with thermal power plant slag showed the highest thickness swelling (%) and sugar leaching (0,042 %). Therefore, in the presence of thermal power plant slag modified matrix, spruce chips are more susceptible to sugar leach. The results of strength characteristics confirmed that sugars leached during hydration and after longer contact of wood-cement composites with water have no negative influence in their final properties in the case of all materials tested (reference and modified).
Downloads
References
Amiandamhen, S.O.; Izekor, D.N. 2013. Effect of wood particle geometry and pre-treatments on the strength and sorption properties of cement-bonded particle boards. J Appl Nat Sci 5(2): 318–322. https://journals.ansfoundation.org/index.php/jans/article/view/324/304
Azhar, S. 2015. Extraction of Polymeric Hemicelluloses from Spruce Wood. Doctoral Thesis. Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm. https://www.diva-portal.org/smash/get/diva2:781407/FULLTEXT01.pdf
Azhar, S.; Henriksson, G.; Theliander, H.; Lindström, M.E. 2015. Extraction of hemicelluloses from fiberized spruce wood. Carbohydr Polym 117: 19-24. https://doi.org/10.1016/j.carbpol.2014.09.050
Bederina, M.; Gotteicha, M.; Belhadj, B.; Dheily, R.M.; Khenfer, M.M.; Queneudec, M. 2012. Drying shrinkage studies of wood sand concrete – Effect of different wood treatments. Constr Build Mater 36: 1066-1075. https://doi.org/10.1016/j.conbuildmat.2012.06.010
Bentz, D.P.; Coveney, P.V.; Garboczi, E.J.; Kleyn, M.F.; Stutzman, P.E. 1994 Cellular automaton simulations of cement hydration and microstructure development. Modell Simul Mater Sci Eng 2(4): 783. . https://doi.org/10.1088/0965-0393/2/4/001
Caprai, V.; Gauvin, F.; Schollbach, K.; Brouwers, H.J.H. 2018. Influence of the spruce strands hygroscopic behaviour on the performances of wood-cement composites. Constr Build Mater 166: 522-530. https://doi.org/10.1016/j.conbuildmat.2018.01.162
Casebier, R.L.; Hamilton, J.K.; Hergert H.L. 1969 Chemistry and mechanism of water prehydrolysis on southern pine wood. Tappi 52(12): 2369-2377.
Cerny, V.; Keprdova, S. 2014. Usability of Fly Ashes from Czech Republic for Sintered Artificial Aggregate. Adv Mat Res 887-888: 805-808. https://doi.org/10.4028/www.scientific.net/AMR.887-888.805
Dewitz, K.; Kuschy, B.; Otto, T. 1984. Stofftransporte bei der Abbindung zementgebundener Holzwerkstoffe. Holztechnologie 3: 151-154. (In German).
The European Committee for Standardization. 1995. Cement-bonded particleboards - Specification - Part 1: General requirements. EN 634-1. CEN.
Brussels, Belgium. https://standards.cencenelec.eu/dyn/www/f?p=CEN:110:0::::FSP_PROJECT,FSP_ORG_ID:2874,6094&cs=16262A73A8E9F4F58643C4C164CE87D51
The European Committee for Standardization. 2007. Cement-bonded particleboards - Specifications - Part 2: Requirements for OPC bonded particleboards for use in dry, humid and external conditions. EN 634-2. CEN. https://standards.cencenelec.eu/dyn/www/f?p=CEN:110:0::::FSP_PROJECT,FSP_ORG_ID:25069,6094&cs=1A4D8BC2FB89E77890A6B224F4E584612
The European Committee for Standardization. 1993. Wood based panels. Determination of modulus of elasticity in bending and of bending strength. EN 310. CEN.
The European Committee for Standardization. 1993. Particleboards and fibreboards. Determination of swelling in thickness after immersion in water. EN 317. CEN.
The European Committee for Standardization. 1993. Particleboards and fibreboards. Determination of transverse tensile strength perpendicular to the plane of the board. EN 319. CEN.
The European Committee for Standardization. 1993. Wood-based panels. Determination of density. EN 323. CEN. https://standards.cencenelec.eu/dyn/www/f?p=CEN:110:0::::FSP_PROJECT,FSP_ORG_ID:2849,6094&cs=1605DEC2A1688AC77A9F8965C2B64D1F4
Fan, M.; Ndikontar, M.K.; Zhou, X.; Ngamveng, J.N. 2012. Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Constr Build Mater 36: 135-140. https://doi.org/10.1016/j.conbuildmat.2012.04.089
Frybort, S.; Mauritz, R.; Teischinger, U.; Müller, U. 2008. Cement bonded composites – a mechanical review. BioResources 3(2): 602-626. https://bioresources.cnr.ncsu.edu/BioRes_03/BioRes_03_2_0602_Frybort_MTM_Cement_bonded_composites_Review.pdf
Govin, A.; Peschard, A.; Fredon, E.; Guyonnet, R., 2005. New insights into cement interaction. Holzforschung 59(3): 330-335. https://doi.org/10.1515/HF.2005.054
Janusa, M.A.; Champagne, C.A.; Fanguy, J.C.; Heard, G.E.; Laine, P.L.; Landry, A.A. 2000. Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement. Microchem J 65(3): 255–259. https://doi.org/10.1016/S0026-265X(00)00120-X
Kochova, K.; Gauvin, F.; Schollbach, K.; Brouwers, H.J.H. 2020. Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Constr Build Mater 231: 117121. https://doi.org/10.1016/j.conbuildmat.2019.117121
Kochova, K.; Schollbach, K.; Gauvin, F.; Brouwers, H.J.H. 2017. Effect of saccharides on the hydration of ordinary Portland cement. Constr Build Mater 150: 268-275. https://doi.org/10.1016/j.conbuildmat.2017.05.149
Lawoko, M.; Henriksson, G.; Gellerstedt, G. 2006. Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung 60(2): 156-161. https://doi.org/10.1515/HF.2006.025
Makhloufi, Z.; Chettih, M.; Bederina, M.; Hadj Kadri El.; Bouhicha, M. 2015. Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behaviour of limestone mortars. Constr Build Mater 95: 647-657. https://doi.org/10.1016/j.conbuildmat.2015.07.050
Melichar, T.; Lédl, M.; Bydžovský, J.; Dufka, A. 2020. Effect of use of non-traditional raw materials on properties and microstructure of cement-bonded particleboards. Waste Forum 4: 254-262. http://www.wasteforum.cz/cisla/WF_4_2020.pdf#page=67
Melichar, T.; Bydzovsky, J.; Dvorak, R.; Topolar, L.; Keprdova, S. 2021a. The behavior of Cement-Bonded Particleboard with Modified Composition under Static Load Stress. Materials 14: 6788. https://doi.org/10.3390/ma14226788
Melichar, T.; Bydzovsky, J.; Keprdova, S., Dufka, A. 2021b. Cement-bonded particleboards with higher content of non-traditional alternative raw materials substituting binder and chips. Waste Forum (4): 262-272. http://www.wasteforum.cz/cisla/WF_4_2021_p262.pdf
Miller, D.P.; Moslemi, A.A. 1991. Wood-cement composites: Effect of model compounds on hydration characteristics and tensile strength. Wood Fiber Sci 23(4): 472-482. https://wfs.swst.org/index.php/wfs/article/view/2119/2119
Miller, D.P.1991. Wood-cement composites: Species and heartwood-sapwood effects on hydration and tensile strength. For Prod 41(3): 9-14.
Na, B.; Wang, Z.; Wang, H.; Xiaoning, L. 2014. Wood-cement compatibility review. Wood Res 59(5): 813-826. http://www.woodresearch.sk/wr/201405/10.pdf
Nasser, R.A.; Salem, M.Z.M.; Al-Mefarrej, H.A.; Aref, I.M. 2016. Use of tree pruning wastes for manufacturing of wood reinforced cement composites. Cem Concr Compos 72: 246-256. https://doi.org/10.1016/j.cemconcomp.2016.06.00
Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. 2013. The filler effect: The influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96(6): 1978-1990. https://doi.org/10.1111/jace.12264
Örså, F.; Holmbom, B.; Thornton, J. 1997. Dissolution and dispersion of spruce wood components into hot water. Wood Sci Technol 31(4): 279-290. https://link.springer.com/content/pdf/10.1007/BF00702615.pdf
Parameswaran, N.; Bröker, F.W.; Simatupang, M.H. 1977. Zur Mikrotechnologie mineralgebundener Holzwerkstoffe. Holzforschung 31: 173-178. (In German).
Pereira, C.; Caldeira Jorge, F.; Irle, M.; Ferreira, J.S. 2006. Characterizing the setting of cement when mixed with cork, blue gum, or maritime pine, grown in Portugal II: X-ray diffraction and differential thermal analyzes. J Wood Sci 52: 318–324. https://doi.org/10.1007/s10086-005-0775-y
Quiroga, A.; Marzocchi, V.; Rintoul, I. 2016. Influence of wood treatments on mechanical properties of wood–cement composites and of Populus Euroamericana wood fibers. Compos B Eng 84: 25-32. https://doi.org/10.1016/j.compositesb.2015.08.069
Rissanen, J.V.; Lagerquist, L.; Eränen, K.; Hemming, J.; Eklund, P.; Grènman, H. 2022. O2 as initiator of autocatalytic degradation of hemicelluloses and monosaccharides in hydrothermal treatment of spruce, Carbohydr Polym 293: 119740. https://doi.org/10.1016/j.carbpol.2022.119740
Schubert, B.; Wienhaus, O.; Bloßfeld, O. 1990. Untersuchungen zum System Holz-Zement. Einfluß unterschiedlicher Zementarten auf das Abbindeverhalten von Holz-Zement-Mischungen. Holz Roh Werkst 48(5): 185-189. (In German). https://link.springer.com/content/pdf/10.1007/BF02617774.pdf
Schwarz, H.G.; Simatupang, M.H. 1983. Einfluß der chemischen Zusammensetzung von Portlandzement auf die Druckfestigkeit von Versuchskörpern aus Zement und Fichten- oder Buchenspänen. Holz Roh Werkst 41: 65-69. (In German). https://link.springer.com/content/pdf/10.1007/BF02612236.pdf
Schwarz, H.G. 1989. Cement-bonded board in Malaysia. In: Proceedings International Conference on fibre and particleboard bonded with inorganic binders. Moslemi A.A. (ed.) Forest Products Research Society, Madison, Wisconsin. 91–93pp.
Sjöström, E. 1993. Wood Chemistry: Fundamentals and Applications (2nd ed.). London: Academic Press.
https://shop.elsevier.com/books/wood-chemistry/sjostrom/978-0-08-092589-9
Sudin, R.; Swamy, N. 2006. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J Mater Sci 41: 6917–6924. https://doi.org/10.1007/s10853-006-0224-3
Soroushian, P.; Won, J.P.; Hassan, M. 2013. Durability and microstructure analysis of CO2-cured cement-bonded wood particleboard. Cem Concr Compos 41: 34-44. https://doi.org/10.1016/j.cemconcomp.2013.04.014
Timell, T.E. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1: 45-70. https://doi.org/10.1007/BF00592255
Vaickelionis, G.; Vaickelioniene, R. 2006. Cement hydration in the presence of wood extractives and pozzolan mineral additives. Ceram–Silikáty 50(2): 115-122. https://www.ceramics-silikaty.cz/2006/pdf/2006_02_115.pdf
Vasubabu, M.; Ramesh Babu, N.Ch.; Nagabhushanam, O.; Venkatesh, R.K. 2018. Chemical treatment effect on mechanical properties of Haldinacordifolia wood species. Mater Today: Proceedings 5(13). Part 1: 26424-26429. https://www.sciencedirect.com/science/article/pii/S2214785318320595
Wang, L.; Chen, S.S.; Tsang, D.C.W.; Poon, C.S.; Shih, K. 2016. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr Build Mater 125: 316-325. https://doi.org/10.1016/j.conbuildmat.2016.08.053
Wei, Y.; Fujii, T.; Hiramatsu, Y.; Miyatake, A.; Yoshinaga, S.; Fujii, T.; Tomita, B. 2004. A preliminary investigation on microstructural characteristics of interfacial zone between cement and exploded wood fiber strand by using SEM-EDS. J Wood Sci 50: 327–336. https://doi.org/10.1007/s10086-003-0576-0
Willför, S.; Holmbom, B. 2004. Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci Technol 38(3): 173-179. https://doi.org/10.1007/s00226-003-0200-x
Willför, S.; Pranovich, A.; Tamminen, T.; Puls, J.; Laine, C.; Suurnakki, A.; Saake, B.; Uotila, K.; Simolin, H.; Hemming, J.; Holmbom, B. 2009. Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crops Prod 29(2–3): 571-580. https://doi.org/10.1016/j.indcrop.2008.11.003
Yasuda, S.; Ima, K.; Matsushita, Y. 2002. Manufacture of wood-cement boards. VII: Cement-hardening inhibitory compounds of hannoki (Japanese alder, Alnus japonica Steud.) J Wood Sci 48(3): 242-244. https://doi.org/10.1007/BF00771375
Yel, H.; Cavdar, A.D.; Torun, S.B. 2020. Effect of press temperature on some properties of cement bonded particleboard. Maderas-Cienc Tecnol 22(1): 83-92. https://doi.org/10.4067/S0718-221X2020005000108
Young, J.F. 1972 A review of the mechanisms of set-retardation in Portland cement pastes containing organic admixtures. Cem Concr Res 2(4): 415–433. https://doi.org/10.1016/0008-8846(72)90057-9
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.