Fotogrametría SfM de bajo costo para monitorización de ensayos sobre estructuras laminares reticulares de madera deformadas elásticamente a escala real

Authors

  • Juan Ortiz-Sanz Universidad de Santiago de Compostela. Escuela Politécnica Superior de Ingeniería. Departamento de Ingeniería Agroforestal. Laboratorio de la Plataforma de Ingeniería de Madera Estructural (PEMADE). Lugo, España.
  • Mariluz Gil-Docampo Universidad de Santiago de Compostela. Escuela Politécnica Superior de Ingeniería. Departamento de Ingeniería Agroforestal. Laboratorio de la Plataforma de Ingeniería de Madera Estructural (PEMADE). Lugo, España.
  • Guillermo Bastos Universidad de Santiago de Compostela. Escuela Politécnica Superior de Ingeniería. Departamento de Ingeniería Agroforestal. Laboratorio de la Plataforma de Ingeniería de Madera Estructural (PEMADE). Lugo, España.
  • Antonio José Lara-Bocanegra Universidad Politécnica de Madrid. Escuela Técnica Superior de Arquitectura. Departamento de Estructuras y Física de Edificación. Madrid, España.

DOI:

https://doi.org/10.22320/s0718221x/2024.08

Keywords:

Precisión, fotogrametría, madera, PhotoModeler, Metashape, gridshell, modelo 3D

Abstract

Para validar modelos numéricos de resistencia de estructuras, es necesario medir su deformación bajo carga. La dificultad de dicha medición aumenta con su tamaño y su complejidad. En el presente estudio se determina la geometría de una estructura laminar reticular de gran tamaño tras una prueba de carga. La estructura fue cargada en sus cinco nodos centrales con un peso suspendido de 105 kg por nodo. Se generó el modelo 3D  de la estructura sin carga y bajo carga, empleando fotogrametría usando software PhotoModeler Scanner y Metashape. El error máximo en la medida de las distancias sobre la escena fue 1,31 mm, que corresponde al 0,17 % respecto a la diagonal de la base de la estructura. El mayor error medio se dio bajo carga máxima, 0,70 mm de acuerdo a Metashapee y 0,44 mm en PhotoModeler Scanner. El perfil de la estructura bajo carga es coherente con la deformación prevista. La calidad de medida del modelo 3D resultó ser altamente uniforme. Este estudio releva el uso de fotos que han sido tomadas varios años después, a través de la fotogrametría utilizando softwares avanzados.

Downloads

Download data is not yet available.

References

Abbaszadeh, S.; Rastiveis, H. 2017. Acomparison of close-range photogrammetry using a non-professional camera with field surveying for volume estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W4: 1-4. https://doi.org/10.5194/isprs-archives-XLII- 4-W4-1-2017

AGISOFT LLC. 2021. Agisoft. Metashape: Rusia. https://www.agisoft.com

Akinade, B.A. 2020. Investigation of the accuracy of photogrammetric point determination using amateur/ non-metric cameras. World Scientific News 145: 298-312. http://yadda.icm.edu.pl/yadda/element/bwmeta1. element.psjd-c06c1b48-eaae-4cb8-8cb7-97b0ba4117a9

Albert, J.; Maas, H.G.; Schade, A.; Schwarz, W. 2002. Pilot studies on photogrammetric bridge deformation measurement. https://www.researchgate.net/profile/Hans-Gerd-Maas/publication/334786265_ Pilot_studies_on_photogrammetric_bridge_deformation_measurement/links/5d4185814585153e59309b28/ Pilot-studies-on-photogrammetric-bridge-deformation-measurement.pdf?origin=publication

Armesto, J.; Lubowiecka, I.; Ordóñez, C.; Rial, F.I. 2009. FEM modeling of structures based on close range digital photogrammetry. Automation in Construction 18(5): 559-569. https://doi.org/10.1016/j. autcon.2008.11.006

Adriaenssens, S.; Block, P.; Veenendaal, D.; Williams, C. 2014. Shell structures for architecture: Form finding and optimization. Routledge: Londres, Reino Unido. 340 p. https://doi.org/10.4324/9781315849270

Caroti, G.; Piemonte, A.; Zaragoza, I.M.E.; Brambilla, G. 2018. Indoor photogrammetry using UAVs with protective structures: Issues and precision tests. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42(3W4): 137-142. https://doi.org/10.5194/isprs-archives- XLII-3-W4-137-2018

Casero, M., Covián, E.; González, A. 2020. Regularization methods applied to noisy response from beams under static loading. Journal of Engineering Mechanics 146(6): e4020038. https://doi.org/10.1061/ (ASCE)EM.1943-7889.0001765

Chilton, J.; Tang, G. 2016. Timber gridshells: Architecture, structure and craft. Routledge: Londres, Reino Unido. https://doi.org/10.4324/9781315773872

Eos Systems Scanner. 2018. PhotoModeler Scanner. Vancouver BC, Canada. https://www.photomodeler.com/products/scanner

EUR-Lex. European Union Law. 2014. Directive 2014/32/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of measuring instruments (recast). EU: Luxembourg. http://data.europa.eu/eli/ dir/2014/32/2015-01-27

Fraser, C.S. 1997. Innovations in automation for vision metrology systems. The Photogrammetric Record 15(90): 901-911. https://doi.org/10.1111/0031-868X.00099

Guindos, P.; Ortiz, J. 2013. The utility of low-cost photogrammetry for stiffness analysis and finite- element validation of wood with knots in bending. Biosystems Engineering 114(2): 86-96. https://doi. org/10.1016/j.biosystemseng.2012.11.002

Harris, R.; Dickson, M.; Kelly, O. 2004. The use of timber gridshells for long span structures. En: Proceedings of the 8th International Conference on Timber Engineering. Lahti, Finnland. https://researchportal. bath.ac.uk/en/publications/the-use-of-timber-gridshells-for-long-span-structures

Harris, R.; Gusinde, B.; Roynon, J. 2012. Design and construction of the pods sports academy, Scunthorpe, England. En: World Conference of Timber Engineering 2012. pp. 510-517). http://www.scopus. com/inward/record.url?scp=84871979269&partnerID=8YFLogxK

Hernández, E.L.; Gengnagel, C.; Sechelmann, S.; Rörig, T. 2011. On the materiality and structural behaviour of highly-elastic gridshell structures. En: Gengnagel, C.; Kilian, A.; Palz, N.; Scheurer, F. (Eds.). Computational Design Modeling. Springer-Verlag: Heidelberg, Alemania. pp 123-135. https://doi.org/10.1007/978-3-642-23435-4_15

Honório, L.M.; Pinto, M.F.; Hillesheim, M.J.; de Araújo, F.C.; Santos, A.B.; Soares, D. 2021. Photogrammetric process to monitor stress fields inside structural systems. Sensors 21(12): e4023. https://doi.org/10.3390/s21124023

Jiang, R.; Jáuregui, D.V.; White, K.R. 2008. Close-range photogrammetry applications in bridge measurement: Literature review. Measurement 41(8): 823-834. https://doi.org/10.1016/j. measurement.2007.12.005

Lara-Bocanegra, A.J.; Majano-Majano, A.; Arriaga, F.; Guaita, M. 2020a. Eucalyptus globulus finger jointed solid timber and glued laminated timber with superior mechanical properties: Characterisation and application in strained gridshells. Construction and Building Materials 265: e120355. https://doi.org/10.1016/j. conbuildmat.2020.120355

Lara-Bocanegra, A.J.; Roig, A.; Majano-Majano, A.; Guaita, M. 2020b. Innovative design and construction of a permanent elastic timber gridshell. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 173(5): 352-362. https://doi.org/10.1680/jstbu.19.00083

Lara-Bocanegra, A.J.; Majano-Majano, A.; Ortiz, J.; Guaita, M. 2022. Structural analysis and form- finding of triaxial elastic timber gridshells considering interlayer slips: Numerical modelling and full-scale test. Applied Sciences 12(11): e5335. https://doi.org/10.3390/app12115335

Lewis, B. 2011. Centre Pompidou-Metz: Engineering the roof. The Structural Engineer: journal of the Institution of Structural Engineer 89(18): 20-26. https://dialnet.unirioja.es/servlet/articulo?codigo=3734367

Lieret, M.; Kogan, V.; Hofmann, C.; Franke, J. 2021. Automated exploration, capture and photogrammetric reconstruction of interiors using an autonomous unmanned aircraft. En: 2021 IEEE International Conference on Mechatronics and Automation - ICMA 2021. Takamatsu, Japón. pp. 301-306. https://doi.org/10.1109/ICMA52036.2021.9512707

Liu, L.; Sun, M.; Ren, X.; Liu, X.; Liu, L.; Zheng, H.; Li, X. 2017. Review on methods of 3D reconstruction from uav image sequences. Acta Scientiarum Naturalium Universitatis Pekinensis 53(6): 1165- 1178. http://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.052

Martínez, S.; Ortiz, J.; Gil, M. 2015. Geometric documentation of historical pavements using automated digital photogrammetry and high-density reconstruction algorithms. Journal of Archaeological Science 53: 1-11. https://doi.org/10.1016/j.jas.2014.10.003

Martínez, S.; Ortiz, J.; Gil, M.L.; Rego, M.T. 2013. Recording Complex Structures Using Close Range Photogrammetry: The Cathedral of Santiago de Compostela. The Photogrammetric Record 28(144): 375-395. https://doi.org/10.1111/phor.12040

Masuda, M.; Iwabuchi, A.; Murata, K. 1999. Analyses of fracture criteria using image correlation method. En: Boström, L. (Ed.). First RILEM Symposium on Timber Engineering. RILEM Publications SARL, Marne la Vallée Cedex 2, Francia. pp. 151-160. https://www.rilem.net/publication/publication/13?id_ papier=1358

Mills, J.; Barber, D. 2004. Geomatics techniques for structural surveying. Journal of Surveying Engineering 130(2): 56-64. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(56)

Mohamed, A.; Deng, Y.; Zhang, H.; Wong, S.H.F.; Uheida, K.; Zhang, Y.X.; Zhu, M.C.; Lehmann, M.; Quan, Y. 2021. Photogrammetric evaluation of shear modulus of glulam timber using torsion test method and dual stereo vision system. European Journal of Wood and Wood Products 79(5): 1209-1223. https://doi.org/10.1007/s00107-021-01729-8

Otto, F.; Hennicke, J.; Matsushita, K. 1974. IL 10 - Gitterschalen. Grid Shells. Institut für leichte Flächentragwerke. Universidad de Stuttgart, Stuttgart, Alemania. ISBN-13: 9783782820103

Park, S.W.; Park, H.S.; Kim, J.H.; Adeli, H. 2015. 3D displacement measurement model for health monitoring of structures using a motion capture system. Measurement 59: 352-362. https://doi.org/10.1016/j. measurement.2014.09.063

Peña Villasenín, S. 2020. Aplicaciones de la fotogrametría de bajo coste al estudio de patrimonio arqueológico y arquitectónico. Ph.D. Thesis, Universidad de Santiago de Compostela, EPSI, Lugo, España. http://hdl.handle.net/10347/20867

Remondino, F.; El-Hakim, S. 2006. Image-based 3D Modelling: A Review. The Photogrammetric Record 21(115): 269-291. https://doi.org/10.1111/j.1477-9730.2006.00383.x

RibbonSoft GmbH. 2018. QCAD - 2D CAD for Windows, Linux and Mac. Sarnen, Suiza. https://www.qcad.org/en

Rombouts, J.; Lombaert, G.; De Laet, L.; Schevenels, M. 2019. A novel shape optimization approach for strained gridshells: Design and construction of a simply supported gridshell. Engineering Structures 192: 166-180. https://doi.org/10.1016/j.engstruct.2019.04.101

Scaioni, M.; Barazzetti, L.; Giussani, A.; Previtali, M.; Roncoroni, F.; Alba, M.I. 2014. Photogrammetric techniques for monitoring tunnel deformation. Earth Science Informatics 7(2): 83-95. https://doi.org/10.1007/ s12145-014-0152-8

The Document Foundation. 2014. LibreOffice. Berlín, Alemania. https://www.libreoffice.org

Uheida, K.; Deng, Y.; Zhang, H.; Galuppi, L.; Gao, J.; Xie, L.; Huang, S.; Qin, X.; Wong, S.H.F.; Guo, J.; Zhang, G.; Mohamed, A. 2021. Determining equivalent-sectional shear modulus in torsion tests for laminated glass beams using photogrammetry method. Composite Structures 276: e114572. https://doi.org/10.1016/j.compstruct.2021.114572

Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. 2012. ‘Structure-from- Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179: 300- 314. https://doi.org/10.1016/j.geomorph.2012.08.021

Williams, N.; Bohnenberger, S.; Cherrey, J. 2014. A system for collaborative design on timber gridshells. In Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA): Kyoto, Japón. pp. 441-450. https://papers.cumincad.org/data/works/att/caadria2014_124.content.pdf

Xiang, S.; Cheng, B.; Zou, L.; Kookalani, S. 2020. An integrated approach of form finding and construction simulation for glass fiber-reinforced polymer elastic gridshells. The Structural Design of Tall and Special Buildings 29(5): e1698. https://doi.org/10.1002/tal.1698

Zhao, X.; Li, Q. 2017. A review on measurement technology for structural testing in civil engineering. Journal of Xi’an University of Architecture and Technology 49(1): 48-55. https://doi.org/10.15986/j.1006-7930.2017.01.008

Zou, J.; Meng, L. 2020. Design of a new coded target with large coding capacity for close- range photogrammetry and research on recognition algorithm. IEEE Access 8: 220285-220292. https://doi.org/10.1109/ACCESS.2020.3043044

Downloads

Published

2023-10-25

How to Cite

Ortiz-Sanz, J. ., Gil-Docampo, M. ., Bastos, G. ., & Lara-Bocanegra, A. J. . (2023). Fotogrametría SfM de bajo costo para monitorización de ensayos sobre estructuras laminares reticulares de madera deformadas elásticamente a escala real. Maderas. Ciencia Y Tecnología, 26, 1–14. https://doi.org/10.22320/s0718221x/2024.08

Issue

Section

Article