Biosorption of methylene blue and malachite green from single and binary solutions by Pinus pinaster bark

Authors

  • Khaoula Litefti Universidade de Santiago de Compostela. School of Engineering. Department of Chemical Engineering. Santiago de Compostela, Spain.
  • M. Sonia Freire Universidade de Santiago de Compostela. School of Engineering. Department of Chemical Engineering. Santiago de Compostela, Spain.
  • Mostafa Stitou Abdelmalek Essaâdi University. Faculty of Sciences. Department of Chemistry. Tétouan, Morocco.
  • Julia González-Álvarez Universidade de Santiago de Compostela. School of Engineering. Department of Chemical Engineering. Santiago de Compostela, Spain.

DOI:

https://doi.org/10.22320/s0718221x/2024.14

Keywords:

Bark, binary solutions, adsorption, Langmuir isotherm, malachite green, methylene blue, Pinus pinaster, wood veneer

Abstract

Aiming to develop a sustainable separation process reducing the water pollution, in this work Pinus pinaster (cluster pine) bark from a wood veneer industry was used for methylene blue and malachite green removal from aqueous systems. For single adsorption, the influence of time (up 8 h), adsorbent dose (2,5 - 5- 10 g·L-1), temperature (25 ºC - 40 ºC - 60 ºC), pH (2 - 4 - 6) and particle size (0,1 mm - 0,5 mm, 0,5 mm - 1 mm and 1,6 mm - 2 mm) on adsorption was investigated. To study the initial concentration effect on binary adsorption, different concentrations (0 - 5 - 25 - 50 mg·L-1) were used at 25 ºC, natural pH and a dose of 5 g·L-1. High efficiency was obtained at pH = 4 (natural pH), dose of 5 g·L-1 and particle size of 0,5 - 1 mm.

Adsorption percentages higher than 70 % were reached in less than one hour, with removal almost complete at equilibrium in single systems, without temperature influence. Methylene blue was slightly better adsorbed b ybark. In binary systems, dyes exhibited competitive adsorption, decreasing their removal, especially increasing the ini- tial concentration of the other dye. Dyes adsorption followed the pseudo-second order kinetic model, whereas the Langmuir isotherm explained adsorption equilibria in mono-component systems. High adsorption capac- ities (41,7 mg·g-1 for malachite green and 50,0 mg·g-1 for methylene blue) were obtained at 40 ºC and natural pH indicating that pine bark can be effectively used as biosorbent.

Downloads

Download data is not yet available.

References

Abdallah, M.; Hijazi, A.; Hamieh, M.; Alameh, M.; Toufaily, J.; Rammal, H. 2016. Étude de l’adsorp- tion du Bleu de Méthylène sur un biomatériau à base de l’eucalyptus selon la taille des particules Treatment of industrial wastewater using a natural and biodegradable adsorbent based on Eucalyptus. Journal of Materials and Environmental Science 7: 4036-4048. https://www.jmaterenvironsci.com/Document/vol7/vol7_N11/432- JMES-2335-Abdallah.pdf

Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.Ch.; Choong, T.S.Y.; Lau, K.L.; Abdullah, M. 2019. Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylo- nitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies. Materials 12(18): e2903. https://dx.doi. org/10.3390/ma12182903

Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.Ch.; Choong, T.S.Y.; Lau, K.L.; Alias, N.H. 2020. Simul- taneous Adsorption of Malachite Green and Methylene Blue Dyes in a Fixed-Bed Column Using Poly(Acry- lonitrile-Co-Acrylic Acid) Modified with Thiourea. Molecules 25(11): e2650. https://doi.org/10.3390/mole- cules25112650

Asfaram, A.; Ghaedi, M.; Ghezelbash, G.R.; Pepe, F. 2017. Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions. Ecotoxicology and Environmental Safety 139: 219-227. https://doi.org/10.1016/j. ecoenv.2017.01.043

Bagheri, A.R.; Ghaedi, M.M.; Asfaram, A.; Hajati, S.; Ghaedi, A.M.; Bazrafshan, A.; Rahimi, M.R. 2016. Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparti- cles loaded on activated carbon using second-derivative spectrophotometry. Journal of the Taiwan Institute of Chemical Engineers 65: 212-224. https://doi.org/10.1016/j.jtice.2016.05.004

Bhatnagar, A.; Jain, A.K. 2005. A comparative adsorption study with different industrial wastes as ad- sorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science 281: 49-55. https://doi.org/10.1016/j.jcis.2004.08.076

Boakye, P.; Ohemeng-Boahen, G.; Darkwah, L.; Sokama-Neuyam, Y.A.; Appiah-Effah, E.; Oduro-Kwarteng, S.; Asamoah-Osei, B.; Asilevi, P.J.; Woo, S.H. 2022. Waste Biomass and Biomateri- als Adsorbents for Wastewater Treatment. Green Energy and Environmental Technology 2022(0): 1-25. https://doi.org/10.5772/geet.05

Chikri, R.; Elhadiri, N.; Benchanaa, M.; El maguana, Y. 2020. Efficiency of sawdust as low-cost ad- sorbent for dyes removal. Journal of Chemistry 2020: e8813420. https://doi.org/10.1155/2020/8813420

Dahri, M.K.; Khoo, M.R.R.; Lim, L.B.L. 2015. Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal 54 (4): 1253-1263. https://doi.org/10.1016/j.aej.2015.07.005

Freundlich, H. 1906. Über die adsorption in lösungen. Journal of Physical Chemistry A 57: 385-470. https://www.degruyter.com document/doi/10.1515/zpch-1907-5723/html

Ghaedi, M.; Hajati, S.; Barazesh, B.; Karimi, F.; Ghezelbash, G. 2013. Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue. Journal of Industrial and Engineering Chemistry 19: 227-233. https://doi.org/10.1016/j.jiec.2012.08.006

Ho, Y.S.; McKay, G. 1999. Pseudo-second order model for sorption process. Process Biochemistry 34(5): 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5

Ho, S. 2022. Adsorbents for the removal of Phenol/Phenolics, Pesticides and Dyes from Wastewater sys- tems: A Review. Water 14(20): e3203. https://doi.org/10.3390/w14203203

Jawad, A.H.; Razuan, R.; Appaturi, J.N.; Wilson, L.D. 2019. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surfaces and Interfaces 16: 76-84. https://doi.org/10.1016/j.surfin.2019.04.012

Jiang, F.; Dinh, D.M.; Hsieh, Y-L. 2017. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohydrate Polymers 173: 286-294. https://doi.org/10.1016/j.carb- pol.2017.05.097

Lagergren, S. 1907. Zur theorie der sogenannten adsorption gelöster stoffe. Zeitschrift für Chemie und Industrie der Kolloide 2: e15. https://doi.org/10.1007/BF01501332

Langmuir, I. 1918. Adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40: 1361-1403. https://pubs.acs.org/doi/abs/10.1021/ja02242a004

Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. 2019. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports 9: e16530. https://doi.org/10.1038/s41598-019- 53046-z

Piccin, J.S.; Vieira, M.L.G.; Gonçalves, J.O.; Dotto, G.L.; Pinto, L.A.A. 2009. Adsorption of FD & C Red No. 40 by chitosan: Isotherms analysis. Journal of Food Engineering 95: 16-20. http://doi.org/10.1016/j. jfoodeng.2009.03.017

Rápó, E; Tonk, S. 2021. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 26 (17): e5419. https://www.mdpi.com/1420- 3049/26/17/5419

Turabik, M. 2008. Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric anal- ysis method. Journal of Hazardous Materials 158(1): 52-64. https://doi.org/10.1016/j.jhazmat.2008.01.033

Vázquez, G.; González-Álvarez, J.; Freire, M.S.; Calvo, M.; Antorrena, G. 2009. Determination of the optimal conditions for the adsorption of cadmium ions and phenol on chesnut (Castanea sativa) shell. Global NEST Journal 11(2): 196-204. https://doi.org/10.30955/gnj.000587

Witek-Krowiak, A. 2011. Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust. Chemical Engineering Journal 171: 976-985. https://doi.org/10.1016/j. cej.2011.04.048

Zou, W.; Bai, H.; Gao, S.; Li, K. 2013. Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. Korean Journal of Chemical Engineering 30 (1): 111- 122. https://doi.org/10.1007/s11814-012-0096-y

Downloads

Published

2023-11-21

How to Cite

Litefti, K. ., Freire, M. S., Stitou, M. ., & González-Álvarez, J. . (2023). Biosorption of methylene blue and malachite green from single and binary solutions by Pinus pinaster bark. Maderas. Ciencia Y Tecnología, 26, 1–12. https://doi.org/10.22320/s0718221x/2024.14

Issue

Section

Article

Most read articles by the same author(s)