Time-moisture superposition principle in creep behavior of white oak with various earlywood vessel locations
DOI:
https://doi.org/10.22320/s0718221x/2024.13Keywords:
America white oak, creep behavior, earlywood, vessel element, Quercus alba, time-moisture superposition principleAbstract
Creep behavior of wood plays a fundamental role in precision processing of wood. In this work, experi- mental creep tests have been conducted to determine the influence of earlywood vessel location and moisture content on creep behavior of Quercus alba (white oak). Time-moisture superposition principle was applied to predict long-term creep behavior of white oak. Results revealed that both of instantaneous and 45-min strain of specimens increased with the increasing of moisture content and decreased with increasing distance between earlywood vessel belt and load-bearing surface significantly. Additionally, the time-moisture superposition principle was found to have feasibility to predict creep behavior of white oak with various earlywood vessel locations and moisture content ranges (6 % - 18 %). We believe that the proposed investigation was beneficial for the processing precision and civil engineering applications of wood.
Downloads
References
Báder, M.; Németh, R.; Konnerth, J. 2019. Micromechanical properties of longitudinally compressed wood. European Journal of Wood and Wood Products 77(3): 341-351. https://doi.org/10.1007/s00107-019- 01392-0
Báder, M.; Németh, R.; Sandak, J.; Sandak, A. 2020. FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose 27(12): 6811-6829. https://doi.org/10.1007/ s10570-020-03131-8
Chen, G.R. 2002. Elasticity. Hehai University Press: Nanjing, People’s Republic of China.
Chen, Y.S.; Zhu, J. 2019. Study on bending characteristics of fast-growing Eucalyptus bookcase shelves by using burgers model. Wood Research 64(1): 137-144. http://www.woodresearch.sk/cms/study-on-bending- chracteristics-of-fast-growing-eucalyptus-bookcase-shelves-by-using-burgers-model/
Dlouhá, J.; Clair, B.; Arnould, O.; Horáček, P.; Gril, J. 2009. On the time-temperature equivalency in green wood: Characterization of viscoelastic properties in longitudinal direction. Holzforschung 63(3): 327-333. https://hal.archives-ouvertes.fr/hal-00437887
de Borst, K.; Bade, T.K.; Wikete, C. 2012. Microstructure-stiffness relationships of ten European and trop- ical hardwood species. Journal of Structural Biology 177(2):532-542. http://doi.org/10.1016/j.jsb.2011.10.010
Englund, E.T.; Svensson, S. 2011. Modeling time-dependent mechanical behavior of softwood using deformation kinetics. Holzforschung 65(2): 231-237. https://doi.org/10.1515/HF.2011.011
Gaff, M.; Kačík, F.; Gašparík, M. 2019. Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce wood. Composite Structures 216: 80-88. https://doi.org/10.1016/j.compstruct.2019.02.091
Hein, P.R.G.; Lima, J.T. 2012. Relationships between microfibril angle, modulus of elasticity and com- pressive strength Eucalyptus wood. Maderas. Ciencia y Tecnología 14(3): 267-274. https://doi.org/10.4067/ S0718-221X2012005000002
Hou, J.F.; Jiang, Y.Q.; Yin, Y.Q.; Zhang, W.G.; Chen, H.L.; Yu, Y.M.; Jiang, Z.H. 2021. Experimental study and comparative numerical modeling of creep behavior of white oak wood with various distributions of earlywood vessel belt. Journal of Wood Science 67(1): e57. https://doi.org/10.1186/s10086-021-01989-1
Hsieh, T.Y.; Chang, F.C. 2018. Effects of moisture content and temperature on wood creep. Holzfor- schung 72(12): 1071-1078. https://doi.org/10.1515/hf-2018-0056
Kaboorani, A.; Blanchet, P.; Laghdir, A. 2013. A rapid method to assess viscoelastic and mechanosorp- tive creep in wood. Wood and Fiber Science 45: 370-382. https://wfs.swst.org/index.php/wfs/article/view/61
Kojima, Y.; Yamamoto, H. 2005. Effect of moisture content on the longitudinal tensile creep behavior of wood. Journal of Wood Science 51(5): 462-467. https://doi.org/10.1007/s10086-004-0676-5
Kutnar, A.; O’Dell, J.; Hunt, C.; Frihart, C.; Kamke, F.; Schwarzkopf, M. 2021. Viscoelastic proper- ties of thermo-hydro-mechanically treated beech (Fagus sylvatica L.) determined using dynamic mechanical analysis. European Journal of Wood and Wood Products 79(2): 263-271. https://doi.org/10.1007/s00107-020- 01629-3
Lichtenegger, L.; Reiterer, A.; Stanzl-Tschegg, S.E.; Fratzl, P. 1999. Variation of cellulose microfibril angles in softwoods and hardwoods-A possible strategy of mechanical optimization. Journal of Structural Biology 128(3): 257-269. https://doi.org/10.1006/jsbi.1999.4194
MATLAB. 2019. MathWorks. MATLAB 9.7. INC: Natick City, Massachusetts, United States.
Moosavi, V.; Eslam, H.K.; Bazyar, B.; Najafi, A.; Talaeepoor, M. 2016. Bending creep behavior of Hornbeam wood. Drvna Industrija 67(4): 341-350. https://doi.org/10.5552/drind.2016.1609
Nakai, T.; Toba, K.; Yamamoto, H. 2018. Creep and stress relaxation behavior for natural cellulose crystal of wood cell wall under uniaxial tensile stress in the fiber direction. Journal of Wood Science 64(6): 745-750. https://doi.org/10.1007/s10086-018-1767-z
Navi, P.; Stanzil-Tschegg, S. 2008. Micromechanics of creep and relaxation of wood. A review COST Action E35 2004-2008: Wood machining-micromechanics and fracture. Holzforschung 63(2):186-195. https://doi.org/10.1515/HF.2009.013
Nimez, P.; Teischinger, A.; Sandberg, D. 2023. Springer handbook of wood science and technology. Springer Handbook of Wood Science and Technology. https://doi.org/10.1007/978-3-030-81315-4
Peng, H.; Zhang, T.Y.; Jiang, J.L.; Zhang, Y.L.; Cao, J.Z.; Lu, J.X. 2021. Comparison of the time-mois- ture and time-temperature equivalences in the creep properties of Chinese fir. Wood Material Science & Engi- neering 17(6): 911-917. https://doi.org10.1080/17480272.2021.1976273
Placet, V.; Passard, J.; Perré, P. 2007. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0 ºC - 95 ℃: Hardwood vs. softwood and normal wood vs. reaction wood. Holz- forschung 61(5): 548-557. https://doi.org/10.1515/HF.2007.093
Placet, V.; Cisse, O.; Boubakar, M.L. 2012. Influence of environmental relative humidity on the tensile and rotational behavior of hemp fibers. Journal of Materials Science 47(7): 3435-3446. https://doi.org/10.1007/ s10853-011-6191-3
Roszyk, E.; Mania, P.; MoliŃski, W. 2012. The influence of microfibril angle on creep Scotch pine wood under tensile stress along the grains. Wood Reseach 57(3): 347-358. http://www.woodresearch.sk/ wr/201203/01.pdf
Salmén, L. 2004. Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies 327(9-10): 873-880. https://doi.org/10.1016/j.crvi.2004.03.010
Sedighi Moghaddam, M.; Van den Bulcke, J.; Wålinder, M.E.P.; Claesson, P.M.; Van Acker, J.; Swerin, A. 2017. Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties. Holzforschung 71(2): 119-128. https://doi.org/10.1515/hf-2015-0227
Song, K. Y. 2003. The technology of wood compressing and multi-direction bending. Master thesis. Ha’erbin, Northeast Forestry University, People’s Republic of China.
Song, K.Y. 2008. Study on the technology of longitudinal compressing and multi-dimensional bending of wood. Ph.D. thesis. Ha’erbin, Northeast Forestry University, People’s Republic of China.
Song, K.Y.; Wang, F.H.; Song, Y.H. 2005. The techniques of F. MandhuRica, Longitudinal compression and bending. Furniture 5: 18-23. https://link.cnki.net/doi/10.16610/j.cnki.jiaju.2005.03.010
Thomas, L.H.; Forsyth, V.T.; Martel, A.; Grillo, I.; Altaner, C.M.; Jarvis, M.C. 2014. Struc- ture and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 21(6): 3887-3895. http://doi.org/10.1007/s10570-014-0431-z
Wang, C.; Wu, Q.; Lin, P.; Yang, D.; Yu, Y.M. 2018. Orthotropic creep performance of small flawless oak board. Scientia Silvae Sinicae 54(4): 79-86. https://doi.org/10.11707/j.1001-7488.20180409
Wang, J.F.; Wang, X.; He, Q.; Zhang, Y.L.; Zhan, T.Y. 2020. Time-temperature-stress equivalence in compressive creep response of Chinese fir at high-temperature range. Construction and Building Materials 235: e117809. https://doi.org/10.1016/j.conbuildmat.2019.117809
Wang, J.; Xu, W. 2014. Research status and development trend of the techniques of solid wood longitudi- nal compressing and bending. Furniture 35(5): 15-19. https://doi.org/10.16610/j.cnki.jiaju.2014.05.001
Wang, S.L. 2017. Research and application of Michael Thonet’s wood bending techniques. Furniture & Interiors 5:16-17. https://link.cnki.net/doi/10.16771/j.cn43-1247/ts.2017.05.003
Yin, Y.Q.; Hou, J.F.; Jiang, Z.H.; Yu, Y.M. 2021. Effect of earlywood vessel distribution on creep char- acteristics of ring-porous oak wood. Journal of Forestry Engineering 6(3): 54-60. https://doi.org/10.13360/j. issn.2096-1359.202009045
Zhang, Y.; Tong, D.; Song, K.Y. 2013. Stress-strain constitutive relation of longitudinal compressed Fraxinus mandshurica Rupr. with hydrothermal-microwave treatment. Journal of Nanjing Forestry University (Natural Sciences Edition) 56(4): 105-109. http:/nldxb.njfu.edu.cn/CN/10.3969/j.issn.1000-2006.2013.04.020
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.