Influences of oak utilization on the medium density fiberboard properties

Authors

  • Osman Çamlıbel Kırıkkale University, Kırıkkale Vocational School, Department of Interior Design, Kırıkkale, Türkiye.
  • Murat Aydın Isparta University of Applied Sciences, Keçiborlu Vocational School, Department of Machine, Isparta, Türkiye.
  • Enüs Koç Kastamonu Entegre Ağaç Sanayi ve Ticaret A.Ş., Kastamonu, Türkiye.

DOI:

https://doi.org/10.22320/s0718221x/2024.21

Keywords:

Medium density fiberboard, modulus of rupture, modulus of elasticity, oak, screw holding resistance, thickness swelling

Abstract

Softwoods are the basic and traditional raw materials for medium-density fiberboard production. However, sustainable consumption of wood material in the production of wood-based products requires material variety. Therefore, the usability of hardwood species in the production and its effects on the board properties should be of interest. Considering this, the influence of oak utilization percentages (30 %, 50 %, 70 %, and 100 %) on the physical (density, thickness swelling-TS 2 and 24 h) and mechanical (modulus of rupture, modulus of elasticity, internal bonding, screw holding resistance, and Janka hardness) properties of medium density fiberboard was evaluated in this study. Boards were factory-made instead of laboratory-made using Quercus petraea (oak), Fagus orientalis (beech), and Pinus sylvester (Scots pine) fibers. According to the results, the modulus of rupture, modulus of elasticity, and Janka hardness values were increased when medium-density fiberboard was produced using only oak fiber. On the contrary, thickness swelling, screwholding resistance, and internal bonding properties were decreased.

Downloads

Download data is not yet available.

References

Akbulut, T.; Koç, E. 2006. The effect of the wood species on the roughness of the surface and profiled areas of medium density fiberboard. Wood Research 51(2): 77-86. http://www.woodresearch.sk/wr/200602/07. pdf

Akgül, M.; Ayrilmis, N.; Çamlıbel, O.; Korkut, S. 2013. Potential utilization of burned wood in man- ufacture of medium density fiberboard. Journal of Material Cycles and Waste Management 15(2): 195-201. https://doi.org/10.1007/s10163-012-0108-3

Akgül, M.; Çöpür, Y.; Güler, C.; Tozluoǧlu, A.; Büyüksari, Ü. 2007. Medium density fiberboard from Quercus robur. Journal of Applied Sciences 7(7): 1085-1087. https://doi.org/10.3923/jas.2007.1085.1087

Akgül, M.; Korkut, S.; Çamlibel, O.; Candan, Z.; Akbulut, T. 2012. Wettability and surface roughness characteristics of medium density fiberboard panels from rhododendron (Rhododendron Ponticum) biomass. Maderas. Ciencia y Tecnología 14(2): 185-193. https://doi.org/10.4067/S0718-221X2012000200006

Akgül, M.; Uner, B.; Çamlibel, O.; Ayata, Ü. 2017. Manufacture of medium density fiberboard (MDF) panels from agribased lignocellulosic biomass. Wood Research 62(4): 615-624. http://www.woodresearch.sk/ wr/201704/11.pdf

ASTM International. ASTM. 1994. Standard Methods of Evaluating the Properties of Wood-base Fiber and Particle Panel Materials. D-1037-78. West Conshohocken, PA, USA.

Antov, P.; Krišták, L.; Réh, R.; Savov, V.; Papadopoulos, A.N. 2021. Eco-Friendly fiberboard pan- els from recycled fibers bonded with calcium lignosulfonate. Polymers 13(4): e639. https://doi.org/10.3390/ polym13040639

Arya, S.; Chauhan, S.; Kumar, R.; Kelkar, B. 2023. Wood polymer composite bonded veneer based hybrid composites. Maderas. Ciencia y Tecnología 25(40): 1-17. http://dx.doi.org/10.4067/s0718- 221x2023000100440

Ayrılmış, N. 2002. Effect of tree species on some mechanical properties of mdf. Journal of the Faculty of Forestry Istanbul University 1(52): 125-146. https://dergipark.org.tr/en/pub/jffiu/issue/18844/198721

British Standards Institution. BS. 2011. Particleboards and Fiberboards. Determination of Resistance to Axial Withdrawal of Screw. BSI EN 320. London, England.

Camlibel, O. 2020. Mechanical and formaldehyde-related properties of medium density fiberboard with zeolite additive. BioResources 15(4): 7918-7932. https://doi.org/10.15376/biores.15.4.7918-7932

Camlibel, O.; Akgul, M. 2020. Mechanical and physical properties of medium density fibreboard with calcite additive. Wood Research 65(2): 231-244. https://doi.org/10.37763/wr.1336-4561/65.2.231244

Çamlıbel, O. 2020. Physical properties and formaldehyde emission effect of hot press parameters. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 21(2): 276-283. https://doi.org/10.17474/artvinofd.740136

Çamlıbel, O.; Yılmaz Aydın, T. 2020. Effects of zeolite on some physical properties and formalde- hyde release of medium density fiberboard. ProLigno 16(4): 22-28. http://www.proligno.ro/ro/articles/2020/4/ CAMLIBEL_Final.pdf

Gul, W.; Khan, A.; Shakoor, A. 2017. Impact of hot pressing temperature on Medium Densi- ty Fiberboard (MDF) performance. Advances in Materials Science and Engineering 2017: e4056360. https://doi.org/10.1155/2017/4056360

Kartal, S.N.; Green, F. 2003. Decay and termite resistance of medium density fiberboard (MDF) made from different wood species. International Biodeterioration & Biodegradation 51(1): 29-35. https://doi.org/10.1016/S0964-8305(02)00072-0

Kubba, S. 2010. Choosing materials and products. In: Green construction project management and cost oversight. Burlington: Elsevier, pp. 221-266. https://doi.org/10.1016/b978-1-85617-676-7.00006-3

Levy, S.M. 2012. Lumber-Calculations to select framing and trim materials. In: Construction Calculations Manual. Oxford: Butterworth-Heinemann, pp. 351-440. https://doi.org/10.1016/b978-0-12-382243-7.00011-5

Neitzel, N.; Hosseinpourpia, R.; Walther, T.; Adamopoulos, S. 2022. Alternative materials from agro-industry for wood panel manufacturing - A review. Materials 15(13): e4542. https://doi.org/10.3390/ ma15134542

Özan, Z.E.; Onat, S.M.; Aydemir, D. 2017. The effects of thermal treatment on the some properties of Scots pine and Uludağ fir woods. Journal of Bartin Faculty of Forestry 19(1): 187-193. https://dergipark.org. tr/tr/download/article-file/306950

Saharudin, M.H.; Md-Tahir, P.; Anwar, U.M.K.; Abdul-Halip, J.; Lee, S.H. 2020. Production of high-performance low density fibreboard from co-refined rubberwood-kenaf core fibres. Journal of Tropical Forest Science 32(1): 17-24. https://doi.org/10.26525/jtfs32.1.17

Savov, V.; Antov, P. 2020. Engineering the properties of eco-friendly medium density fibreboards bonded with lignosulfonate adhesive. Drvna Industrija 71(2): 157-162. https://www.drvnaindustrija.com/site/assets/ files/1272/5_drv_ind_vol_71_2_savov.pdf

Savov, V.; Valchev, I.; Antov, P.; Yordanov, I.; Popski, Z. 2022. Effect of the adhesive system on the properties of fiberboard panels bonded with hydrolysis lignin and phenol-formaldehyde resin. Polymers 14(9): e1768. https://doi.org/10.3390/polym14091768

Turkish Standards Institution. TS. 1999. Wood- Based panels- Determination of modulus of elasticity in bending and of bending strength. TSE. EN 310. Ankara, Türkiye.

Turkish Standards Institution. TS. 2005. Particleboards-Specifications. TSE. TS EN 312. Ankara, Tür- kiye.

Turkish Standards Institution. TS. 1999. Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. TSE. TS EN 317. Ankara, Türkiye.

Turkish Standards Institution. TS. 1999. Particleboards and fibreboards- Determination of tensile strength perpendicular to the plane of the board. TSE. TS EN 319. Ankara, Türkiye.

Turkish Standards Institution. TS. 1999. Wood- Based panels- Determination of density.TSE. TS EN

Ankara, Türkiye.

Turkish Standards Institution. TS. 2006. Fibreboards - Specifications - Part 5: Requirements for dry process boards (MDF).TSE. TS EN 622-5. Ankara, Türkiye.

Valchev, I.; Yordanov, Y.; Savov, V.; Antov, P. 2021. Optimization of the hot-pressing regime in the production of eco-friendly fibreboards bonded with hydrolysis lignin. Periodica Polytechnica Chemical Engi- neering 66(1): 125-134. https://doi.org/10.3311/PPch.18284

Xie, Y.; Tong, Q.; Chen, Y.; Liu, J.; Lin, M. 2011. Manufacture and properties of ultra-low density fibre- board from wood fibre. BioResources 6(4): 4055-4066. https://doi.org/10.15376/biores.6.4.4055-4066

Yılmaz Aydın, T.; Aydın, M. 2018. Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test. Turkish Journal of Forestry 19(2): 185-191.https://doi.org/10.18182/tjf.397907

Yılmaz Aydın, T.; Aydın, M. 2020. Influence of temperature and exposure duration on the bending proper- ties of oak wood. Journal of Bartin Faculty of Forestry 22(3): 871-877. https://doi.org/10.24011/barofd.792268

Yorur, H.; Birinci, E.; Gunay, M.N.; Tor, O. 2020. Effects of factors on direct screw withdrawal re- sistance in medium density fiberboard and particleboard. Maderas. Ciencia y Tecnología 22(3): 375-384. https://doi.org/10.4067/S0718-221X2020005000311

Yüksel, M.; Kılıç, H.; Kuşkun, T.; Kasal, A. 2022. Predictive expressions for withdrawal force capacity of various size of dowels from particleboard and medium density fiberboard. Maderas. Ciencia y Tecnología 24: 1-16. https://doi.org/10.4067 S0718-221X2022000100436

Downloads

Published

2024-01-08

How to Cite

Çamlıbel, O. ., Aydın, M. ., & Koç, E. . (2024). Influences of oak utilization on the medium density fiberboard properties. Maderas-Cienc Tecnol, 26, 1–12. https://doi.org/10.22320/s0718221x/2024.21

Issue

Section

Article