Usability of fractometer for the purpose of a practical preliminary assessment tool for wood density of Pinus brutia

Authors

  • Bilgin Icel Çanakkale Onsekiz Mart Üniversitesi. Canakkale Technical Vocational School. Canakkale, Turkiye.

DOI:

https://doi.org/10.22320/s0718221x/2024.29

Keywords:

Fractometer, NDT, Pinus brutia, red pine, tree selection, X-ray densitometry, wood density

Abstract

The fractometer is a device that breaks increment cores to measure fracture strength. The advantages of the device are that it is relatively fast, easy to use in the field, and it can perform direct strength measurements on increment cores. The main purpose of the study was to evaluate the usability of the fractometer as a preliminary evaluation tool for wood density traits of standing Turkish Pinus brutia (red pine) trees. Fracture strength was measured on 5 mm diameter increment cores, and X-ray densitometry was used for density measurements. Due to the high correlation between the two traits (fracture and density), a model was built using linear regression. Fifty trees were sampled to build the statistical model (r2: 0,74), and an equal sample size was used to test  the model. The density value obtained from the model was 0,546 gcm-3, while the density value averaged by the X-ray method for the same group was 0,543 gcm-3. When considering mean values, it can be said that the model provides a good prediction. Based on personal experience and research results, some trees exhibited better growth and wood quality traits than others. Breeding from these trees could offer improvement in tim- ber production and performance for Pinus brutia (red pine). As a general consequence, the fractometer and increment core sampling can be used for pine tree breeding programs for the preliminary assessment of wood density.

Downloads

Download data is not yet available.

References

Barnett, J.R.; Jeronimidis, G. 2003. Wood Quality and its Biological Basis. Blackwell Publishing Ltd: Oxford, UK. ISBN 1–84127–319–8. https://books.google.com.tr/books?id=NhwSMryGzY0C&pg=PR3&- source=kp_read_button&hl=en&redir_esc=y#v=onepage&q&f=false

Brashaw, B.K.; Bucur, V.; Divos, F.; Gonçalves, R.; Lu, J.; Meder, R.; Pellerin, R.F.; Potter, S.; Ross, R.J.; Wang, X.; Yin, Y. 2009. Nondestructive testing and evaluation of wood: A Worldwide research update. Forest Products Journal 59(3): 7-14. https://www.fpl.fs.usda.gov/documnts/pdf2009/fpl_2009_brashaw001. pdf

Bucur, V. 2003. Nondestructive characterization and imaging of wood. Springer-Verlag: Berlin Heidel- berg. ISBN 978-3-540-43840-3. https://doi.org/10.1007/978-3-662-08986-6

Chiu, C.M.; Wang, S.Y.; Lin, C.J.; Yang, T.H.; Jane, M.C. 2006. Application of the Fractometer for crushing strength: Juvenile-mature wood demarcation in Taiwania (Taiwania ryptomerioids). Journal of Wood Science 52(1): 9-14. https://jwoodscience.springeropen.com/counter/pdf/10.1007/s10086-005-0723-x.pdf

Cown, D. 2005. Understanding and managing wood quality for improving product value in New Zealand. New Zealand Journal of Forestry Science 35(2/3): 205-220. https://www.scionresearch.com/ data/assets/ pdf_file/0020/59114/08_COWN.pdf

Cown, D. 2006. Wood quality in standing timber - evolution of assessment methods in plantations, Wood Structure and Properties ́06. Edited by S, Kurjatko.; J, Kúdela.; R, Lagaňa. Arbora Publishers: Zvolen, Slo- vakia. 11-17 ISBN 80-968869-4-3.

Davis, C. 2013. Chapter:6. Basic Statistical Testing, ISBN:9780643107120. In: SPSS for Applied Scienc- es. CSIRO publishing: Australia. https://www.publish.csiro.au/book/6900

Dolwin, J.A. 1996. Evaluation of internal defects in trees and the legal implications. Arboricultural Jour- nal 20(2):173-178. https://doi.org/10.1080/03071375.1996.9747112

Ganesan, S.K.; Abdul Hamid, M. 2010. Survey of wood strength properties of urban trees in Singa- pore using the fractometer II. Journal of Tropical Forest Science 22(1): 97-105. https://www.jstor.org/sta- ble/23616695

Goetz, K.; Bethge, K.; Mattheck, C. 2002. The Fractometer II - a mobile wood-testing device. Institut für Materialforschung. Report nummer FZKA-6704. https://publikationen.bibliothek.kit.edu/270051621/3814177

Guller, B. 2007. The effects of thinning treatments on density, MOE, MOR and maximum crushing strength of Pinus brutia Ten. Wood. Annals of Forest Science 64: 467-475. http://dx.doi.org/10.1051/forest:2007024

Guller, B. 2010. Kızılcam’da (Pinus Brutia Ten.) Odun yogunluğunun x-ray yogunluk olcer ile belir- lenmesi. Suleyman Demirel Universitesi Orman Fakultesi Dergisi A(2): 97-109. https://dergipark.org.tr/tr/ download/article-file/195756

Guller, B.; Isik, K.; Cetinay, S. 2011. Genetic variation in Pinus brutia Ten.: Wood density traits. BioRe- sources 6(4): 4012-4027. https://bioresources.cnr.ncsu.edu/BioRes_06/BioRes_06_4_4012_Guller_IC_ WoodDensityTraits_2015.pdf

Haygreen, J.G.; Bowyer, J.L. 1996. Forest Products and Wood Science. 3. Edition. Iowa State University Press, US. ISBN 0-81382-256-4

Isik, F. 1998. Genetic variation, heritabilities and genetic gain from Pinus brutia open-pollinated prog- eny trials. Southwest Anatolia Forest Research Institute. Tech. Bull.:7. ISBN 975-8273-08-6. https://www. ogm.gov.tr/batiakdeniz/yayinlarimiz-sitesi/Yayinlarimiz/Teknik%20B%C3%BClten/Teknik%20B%C3%B- Clten%20No%2007%20K%C4%B1z%C4%B1l%C3%A7amda%20(Pinus%20brutia%20Ten.pdf

Kandemir, G. 2013. TURKEY: First National Report on Forest Genetic Resources Country. Country Report for the FAO First State of the World’s Forest Genetic Resources for Food and Agriculture. FAO publi- cation. https://www.fao.org/3/i3825e/i3825e71.pdf

Kiaei, M. 2011. Anatomical, physical, and mechanical properties of eldar pine (Pinus eldari- ca Medw.) grown in the Kelardasht region. Turkish Journal of Agriculture and Forestry 35(1): 31-42. https://doi.org/10.3906/tar-1001-552

Kumar, S. 2004. Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine. Canadian Journal of Forest Research 34(12): 2601-2610. https://doi.org/10.1139/ x04-128

Kraler, A.; Beikircher, W. 2013. Non-Destructive and Semi-Destructive Test Methods for Strength De- termination of Aged Wood. Advanced Materials Research 778: 385-392. https://doi.org/10.4028/www.scien- tific.net/amr.778.385

Lin, C.J.; Wang, S.Y.; Chiu, C.M. 2007. Crushing strength sampling with minimal damage to Taiwania (Taiwania cryptomerioides) using a fractometer. Wood and Fiber Science 39(1): 39-47. https://wfs.swst.org/ index.php/wfs/article/download/1136/1136/0

Lin, C.J.; Wang, S.Y.; Chiu, C.M. 2004. Assessment of crushing strength in Taiwania using the frac- tormeter. Taiwan Forest Prod Indus 23(1): 23-31. https://cir.nii.ac.jp/crid/1574231875251576960

Matheny, N.P.; Clark, J.; Attewell, D.; Hillery, K.; Graham, A.W.; Posner, G. 1999. Assessment of fracture moment and fracture angle in 25 tree species in the United States using the fractometer. Journal of Arboriculture 25(1): 18-23. https://doi.org/10.48044/jauf.1999.003

Matsumoto, K.; Ishiguri, F.; Lizuka, K.; Yokota, S.; Yoshizawa, N. 2008. Evaluation of bending and compression strength of wood using Fractometer. Wood Industry 63(8): 358-363. https://agris.fao.org/search/ en/providers/122558/records/64724a9053aa8c89630557db

Matsumoto, K.; Ishiguri, F.; Wahyudi, I.; Takashima, Y.; Shimizu, K.; Lizuka, K.; Yokota, S.; Yoshizawa, N. 2010. Application of Fractometer for wood property evaluation in five Indonesian planta- tion species. Bulletin of the Utsunomiya University Forests 46: 1-6. https://agriknowledge.affrc.go.jp/ RN/2010792439.pdf

Mattheck, C.G.; Breloer, H.; Bethge, K.A.; Albrecht, W.A.; Zipse, A.W. 1995. Use of the Frac- tormeter to determine the strength of wood with incipient decay. Journal of Arboriculture 21(3):105-112. https://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=2670&Type=2

McDonald, J.H. 2014. Handbook of Biological Statistics .3rd ed. Sparky House Publishing: Baltimore, Maryland. http://www.biostathandbook.com/pairedttest.html

Missanjo, E.; Matsumura, J. 2016. Genetic improvement of wood properties in Pinus kesiya Royle ex Gordon for sawn timber production in Malawi. Forests 7(11): e253. https://doi.org/10.3390/f7110253

Neyhart, J.L.; Lorenz, A.J.; Smith, K.P. 2019. Multi-trait improvement by predicting genetic correlations in breeding crosses. G3-Genes Genomes Genetics 9(10): 3153-3165. https://doi.org/10.1534/g3.119.400406

Nocetti, M. 2008. Miglioramento genetico delle piante per la produzione legnosa conpartico- lare riferimento ai caratteri del legno. Forest@ - Journal of Silviculture and Forest Ecology 5: 112-120. https://foresta.sisef.org/contents/?id=efor0506-0050112

Panshin, A.; de Zeeuw, C. 1980. Textbook of wood technology. McGraw-Hill Inc.: New York, US. 122p.

Probett, P.S.E.; Craig, C.S.; Probett, B.J. 2013. In situ structural timber strength measurement advances using qualitative resistography and quantitive resisto- fractometry. 18th International Nondestructive Testing and Evaluation of Wood Sym. Madison-WI, US. https://inspectapedia.com/structure/In_Situ_Structural_Timber_Strength_Measurement_Advances_Probett_2013.pdf

Ruotsalainen, S. 2014. Increased forest production through forest tree breeding. Scandinavian Journal of Forest Research 29(4): 333-344. https://doi.org/10.1080/02827581.2014.926100

Steffenrem, A.; Saranpää, P.; Lundqvist, S.O.; Skrøppa, T. 2007. Variation in wood proper- ties among five full-sib families of Norway spruce (Picea abies). Annals of Forest Science 64: 799-806. https://doi.org/10.1051/forest:2007062

Tang, A.M.C.; Chu, P.P.L.; Leung, M.W.K.; Chu, L.M.; Liao, W.H. 2016. Evaluating wood strength properties of subtropical urban trees using fractometer II. Journal of Tropical Forest Science 28(3): 249-259. https://www.jstor.org/stable/43856529

Wu, H.X.; Eldridge, K.G.; Matheson, A.C.; Powell, M.B.; McRae, T.A.; Butcher, T.B.; Johnson, I.G. 2007. Achievements in forest tree improvement in Australia and New Zealand 8. successful introduction and breeding of radiata pine in Australia. Australian Forestry 70 (4): 215-225. https://doi.org/10.1080/00049158. 2007.10675023

Yildirim, K.; Ozturk, H.; Siklar, S.; Balkiz, O.D.; Kaya, Z. 2011. Strong genetic control of high wood specific gravity in young progenies of Pinus brutia: Potential of early selection for industrial plantations. Sil- vae Genetica 60: 249-258. https://doi.org/10.1515/sg-2011-0033

Zobel, B.J.; Talbert, J. 1984. Applied forest tree improvement. New York: John Wiley & Sons. 505p. https://blackburnpress.stores.yahoo.net/apfotrim.html

Zobel, B.J.; Buijtenen, J.P. 1989. Wood Variation Its Causes and Control. Springer Series in Wood Science. Springer: Berlin, Heidelberg. https://link.springer.com/book/10.1007/978-3-642-74069-5

Zhang, S.Y. 1997. Wood specific gravity-mechanical property relationship at species level. Wood Science and Technology 31:181-191. https://link.springer.com/content/pdf/10.1007/BF00705884.pdf

Downloads

Published

2024-01-12

How to Cite

Icel, B. . (2024). Usability of fractometer for the purpose of a practical preliminary assessment tool for wood density of Pinus brutia. Maderas-Cienc Tecnol, 26, 1–14. https://doi.org/10.22320/s0718221x/2024.29

Issue

Section

Article