Fire performance of Pinus taeda wood treated with zinc borate before and after leaching
DOI:
https://doi.org/10.22320/s0718221x/2024.35Keywords:
Fire retardant, leaching effect, Pinus taeda, scanning electron microscope, vandersall tunnel, thermal degradation, physical wood propertiesAbstract
Owing to its physico-mechanical properties, wood is widely used in housing for both outdoor structures and indoors in floors, ceilings and others. However, its vulnerability to fire makes protection necessary for occupant safety and damage prevention. In this study, the fire performance of Pinus taeda (loblolly pine) wood from northeastern Uruguay treated with zinc borate synthetized in our laboratory is tested. The effect of leaching on zinc borate fire retardant properties was also evaluated. The following parameters associated with the thermal degradation process of wood were analyzed: flame spread, carbonized area, carbonization index and mass loss. The wood was radially and tangentially exposed to the flame in a Vandersall tunnel under controlled conditions for three exposure times: 30, 60, and 80 seconds. The micromorphology of the surfaces exposed to the flame at each exposure time was analyzed with a scanning electron microscope in order to evaluate fiber damage, zinc borate distribution within the wood, and the effects of leaching on fire performance. A clear improvement in the fire resistance of the zinc borate -treated wood could be verified for all exposure times; leaching did not affect its fire retardant properties despite the harsh conditions of the test, making the product potentially suitable for outdoor use.
Downloads
References
Ali, S.; Hussain, D.; Mohd Tohir, M. 2019. Fire test and effects of fire retardant on the natural ability of timber: A review. Pertanika Journal of Science and Technology 27(2): 867-895. http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2027%20(2)%20Apr.%202019/21.%20JST%201210-2018.pdf
Almeida, G.; Rémond, R.; Perré, P. 2018. Hygroscopic behaviour of lignocellulosic materi- als: Dataset at oscillating relative humidity variations. Journal of Building Engineering 19: 320-333. https://doi.org/10.1016/j.jobe.2018.05.005
AWPA. 2005. Standard for Wet Ashing Procedures for Preparing Wood for Chemical Analysis. AWPA A07-04. Alabama, USA.
Aseeva, R.; Serkov, B.; Sivenkov, A. 2014. Fire Safety and Fire Resistance of Building Structures and Timber Constructions. In: Fire Behavior 20 and Fire Protection in Timber Buildings. Springer Series in Wood Science. Springer: Dordrecht, Holland. https://doi.org/10.1007/978-94-007-7460-5_8
AENOR. 2020. Durability of wood and wood-based products - Accelerated ageing of treated wood prior to biological testing - Leaching procedure. UNE EN 84. AENOR: España.
Ballarin, A.; Palma, H. 2003. Propiedades de resistencia e rigidez da madeira juvenil e adulta de Pinus taeda L. Revista Arvore 27(3): 371-380. https://doi.org/10.1590/S0100-67622003000300014.
Bolt, H.; Duydu, Y.; Başaran, N.; Golka, K. 2017. Boron and its compounds: current biological research activities. Archives of Toxicology 91:2719-2722. https://doi.org/10.1007/s00204-017-2010-1
Bolt, H.; Başaran, N.; Duydu, Y. 2020. Effects of boron compounds on human reproduction. Archives of Toxicology 94:717-724. https://doi.org/10.1007/s00204-020-02700-x
Branca, C.; Di Blasi, C. 2007. Oxidation characteristics of chars generated from wood impregnat ed with (NH4) 2HPO4 and (NH4) 2SO4. Thermochimica Acta 456(2): 120-127. https://doi.org/10.1016/j.tca.2007.02.009
Caldeira, F. 2010. Boron in Wood Preservation A Review in its Physico-Chemical Aspects. Silva Lusitana 18(2): 179-196. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=11162d674a59d-28975034e6dc3cc98c659e86ae6
Camargo, A.; Ibáñez, C. 2018. Initial study of micronized zinc borate as a flame retardant in eucalyptus grandis from Uruguay. MRS Advances 3(61): 3551-3556. https://doi.org/10.1557/adv.2018.585
CEN. 2020. Durability of wood and wood-based products - Test method against wood destroying basidio- mycetes - Part 1: Assessment of biocidal efficacy of wood preservatives. EN 113-1:2020. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0065766
Dawson, B.; Parker, G.; Cowan, F.; Croucher, M.; Hong, S.; Cummins, N. 1990. Interlaboratory determination of boron compounds in preservative treated timber. Analytica Chimica Acta 236: 423-430. https://doi.org/10.1016/S0003-2670(00)83343-7
Dietenberger, M.; Hasburgh, L. 2016. Wood products: Thermal degradation and fire. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/b978-0-12-803581-8.03338-5
Donmez Cavdar, A.; Mengelolu, F.; Karakus, K. 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60: 6-12. https://doi.org/10.1016/j.measurement.2014.09.078
Fang, Y.; Wang, Q.; Guo, C.; Song, Y.; Cooper, P. 2013. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinylchloride (PVC) composites. Journal of Analytical and Applied Pyrolysis 100: 230-236. https://doi.org/10.1016/j.jaap.2012.12.028
Garba, B. 1999. Effect of zinc borate as flame retardant formulation on some tropical woods. Polym De- grad Stab 64(3): 517-522. https://doi.org/10.1016/S0141-3910(98)00136-0
García Enríquez, I.; Ibarra, M.; Ramírez Cortés, J. 2009. Segmentación de rostro por color de la piel aplicado a detección de somnolencia en el conductor. In Proceeding of the Congreso Nacional de Ingeniería Electrónica del Golfo CONAGOLFO. Ciudad de México. México. https://www-elec.inaoep.mx/~jmram/cv- jmr/Segmentacion%20de%20rostro%20por%20color2009.pdf
Goli, G.; Becherini, F.; Di Tuccio, M.C.; Bernardi, A.; Fioravanti, M. 2019. Thermal expansion of wood at different equilibrium moisture contents. Journal of Wood Science 65: e4. https://doi.org/10.1186/s10086-019-1781-9
Hansman, C.; Gindi, W.; Wimmer, R.; Teischinger, A. 2002. Permeability of wood- a review. Wood Research 47(4): 1-16. https://www.cabidigitallibrary.org/doi/full/10.5555/20033126212
Hilado, C. 1967. Effects of flame variation in ASTM D1692 flammability test. Journal of Cellular Plastics 3(6): 280-286. https://doi.org/10.1177/0021955X6700300604
Hosseini Hashemi, S.; Latibari, A.; Khademi-Eslam, H.; Alamuti, R. 2010. Effect of boric acid treat- ment on decay resistance and mechanical properties of poplar wood. BioResources 5(2): 690-698. https://doi.org/10.15376/biores.5.2.690-698
Hu, Z.; Qi, L. 2010. Sample digestion methods. In: Treatise on Geochemistry. H.D, Holland.; K.K, Turekian (Eds.). Elsevier: Holland. https://doi.org/10.1016/B978-0-08-095975-7.01406-6
Jiang, J.; Li, J.; Hu, J.; Fan, D. 2010. Effect of nitrogen phosphorus flame retardants on thermal degra- dation of wood. Construction and Building Materials 24(12): 2633-2637. https://doi.org/10.1016/j.conbuild-mat.2010.04.064
Leon, A.; Carmona, R. 2008. Estudio comparativo del punto de ignición y avance de la llama en madera de pino radiata versus un compuesto de madera resina termoplástica. In Proceeding of the 4to Congreso Chile- no de Ciencias Forestales. Oct 1-3 Talca, México. http://dspace.utalca.cl/handle/1950/6253
Lykidis, C.; Bak, M.; Mantanis, G.; Németh, R. 2016. Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. European Journal of Wood and Wood Products 74(6): 909-911. https://doi.org/10.1007/s00107-016-1093-3
Lowden, L.; Hull, R. 2013. Flammability behavior of wood and a review of the methods for its reduction. Fire Science Reviews 2: e4. https://doi.org/10.1186/2193-0414-2-4
Lloyd, J.; Taylor, J.; Brischke, C.; Irby, N. 2020. Protecting the heartwood of wood infrastructure - improving performance with borate dual treatments. Wood Material Science & Engineering 15(6): 361-367. https://doi.org/10.1080/17480272.2020.1749881
Mantanis, G.; Terzi, E.; Kartal, N.; Papadopoulos, A. 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and cooper-based nanocompounds. International Biodeterioration & Biodegradation 90: 140-144. https://doi.org/10.1016/j.ibiod.2014.02.010
Mazela, B.; Broda, M.; Perdoch, W. 2014. Fire resistance of wood treated with potassium carbon- ate and silanes. In Proceedings of the 45th IRG Annual Meeting.11-15 May, 2014. St George, Utah, USA. https://www.irg-wp.com/irgdocs/details.php?53935ea9-07e9-4e49-74b1-13b48de97c8e
Mensah, R.A.; Jiang, L.; Renner, J.S.; Xu, Q. 2023. Characterisation of the fire behaviour of wood: From pyrolysis to fire retardant mechanisms. Journal of Thermal Analysis and Calorimetry 148: 1407-1422. https://doi.org/10.1007/s10973-022-11442-0
Milota, T.; Tschernitz, J.; Verrill, M.; Mianowski, T. 1995. Gas Permeability of Plantation Loblolly Pine. Wood and Fiber Science 27(1): 34-40. https://wfs.swst.org/index.php/wfs/article/view/249
Mohammed, S.; Mohammed, G.; Raefat, S.; Laaroussi, N. 2017. Simultaneous estimation of volumet- ric capacity and thermal conductivity of moroccan wood species from 24 experimental flash method. Energy Procedia 139: 639-644. https://doi.org/10.1016/j.egypro.2017.11.265
Mohareb, A.; Thévenon, M.; Wozniak, E.; Gérardin, P. 2010. Effects of monoglycerides on leachabil- ity and efficacy of boron wood preservatives against decay and termites. International Biodeterioration & Biodegradation 64(2): 135-138. https://doi.org/10.1016/j.ibiod.2009.12.004
Moya, L.; Laguarda, M.; Cagno, M.; Cardozo, A.; Gatto, F.; O¨Neal, H. 2013. Physical and Me- chanical Properties of Loblolly and Slash Pine Wood from Uruguayan Plantations. Forest Products Jour- nal 63(3/4):128-137. https://meridian.allenpress.com/fpj/article/63/3-4/128/136626/Physical-and-Mechani-cal-Properties-of-Loblolly-and
Obanda, D.; Shupe, T.; Barnes, H. 2008. Reducing leaching of boron based wood preservatives a review of research. Bioresource Technology 99(15): 7312-7322. https://doi.org/10.1016/j.biortech.2007.12.077
Poletto, M.; Zattera, A.; Santana, R. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 12(322): 7-12. https://doi.org/10.1016/j.biortech.2012.08.133
Popescu, C.; Pfriem, A. 2020. Treatments and modification to improve the reaction to fire of wood and wood based products - An overview. Fire and Materials 44: 100-111. https://doi.org/10.1002/fam.2779
Ramanathan, T.; Ting, Y. P. 2015. Selection of wet digestion methods for metal quantification in hazard- ous solid wastes. Journal of Environmental Chemical Engineering 3(3): 1459-1467. https://doi.org/10.1016/j.jece.2015.05.380006
Ramos, F.; Caldeira, J.; Botelho, C. 2006. Boron fixation in wood: studies of fixation mech- anisms using model compounds and maritime pine. Holz als Roh- und Werkstoff 64: 445-450. http://dx.doi.org/10.1007/s00107-006-0139-3
Statistical Analysis Software. SAS. 2014. SAS® 9.4 Statements: Reference. SAS Institute Inc:Cary, NC, USA.
Schneider, C.; Rasband, W.; Eliceiri, K. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675. https://doi.org/10.1038/nmeth.2089
Skaar, C. 1988. Electrical Properties of Wood. In: Wood-Water Relations. Springer Series in Wood Sci- ence. Springer: Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-73683-4_6
Senalik, C.A.; Farber, B. 2021. Mechanical properties of wood. In Wood handbook wood as an engineer- ing material. General Technical Report FPL-GTR-282. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI. 46p. https://www.fs.usda.gov/research/treesearch/62244
Siau, J.F. 1984. Wood structure and chemical composition. In Transport Processes in Wood. Timel, T. E. (Ed.) Springer-Verlag: Berlin Germany. https://doi.org/10.1007/978-3-642-69213-0
Stark, N.; White, R.; Mueller, S.; Osswald, T. 2010. Evaluation of various fire retardants for use in wood flourpolyethylene composites. Polymer Degradation and Stability 95(9): 1903–1910. https://doi.org/10.1016/j.polymdegradstab.2010.04.014
Tascioglu, C.; Umemura, K.; Yoshimura, T.; Tsunoda, K. 2014. Biological performance of zinc bo- rate-incorporated particleboard: Effects of leaching on efficacy. Composites Part B: Engineering 57: 31-34. https://doi.org/10.1016/j.compositesb.2013.09.037
Terzi, E.; Sutcu, H.; Piskin, S.; Kartal, N. 2009. Thermal behavior of zinc borate – treated wood. In the Proceedings of the 40th IRG Annual Meeting.24-28 May, 2009. Beijing, China. https://www.irg-wp.com/irgdocs/details.phpa3e036d8-79d2-f9be-f32e-2c802806e6e526
Uluisik, I.; Karakaya, H.; Koc, A. 2018. The importance of boron in biological systems. Journal of Trace Elements in Medicine and Biology 45: 156-162. https://doi.org/10.1016/j.jtemb.2017.10.008
Vakhitova, L. 2019. Fire retardant nanocoating for wood protection. In Nanotechnology in Eco-efficient Construction. Pacheco-Torgal, F.; Diamanti, M.; Nazari, A.; Granqvist, C.; Pruna, A.; Amirkhanian, S. (Eds.). Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing: United Kingdom. https://doi.org/10.1016/B978-0-08-102641-0.00016-5
Walley, S.; Rogers, S. 2022. Is Wood a Material? Taking the Size Effect Seriously. Materials 15(15): e5403. https://doi.org/10.3390/ma15155403
Wilson, W. 1958. The determination of boron in treated wood. Analytica Chimica Acta 19: 516-519. https://doi.org/10.1016/S0003-2670(00)88210-0
Yang, Y.; Shi, X.; Zhao, R. 1999. Flame Retardancy Behavior of Zinc Borate. Journal of Fire Sciences 17(5): 355-361. https://doi.org/10.1177/073490419901700502
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.