Biological resistance of thermally modified Gmelina arborea wood

Authors

  • Maxidite Minkah Kwame Nkrumah University of Science and Technology. Department of Forest Resources Technology. Kumasi, Ghana.
  • Kojo Agyapong Afrifah Kwame Nkrumah University of Science and Technology. Department of Wood Science and Technology. Kumasi, Ghana.
  • Charles Antwi-Boasiako Kwame Nkrumah University of Science and Technology. Department of Wood Science and Technology. Kumasi, Ghana.
  • Ana Paula Soares da Silva Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.
  • Jaqueline Rocha de Medeiros Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.
  • Juarez Paes Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.
  • Djeison Batista Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.
  • Christian Brischke Thünen-Institut für Holzforschung. Hamburg, Deutschland.
  • Holger Militz Georg-August Universität Göttingen. Abteilung Holzbiologie und Holzprodukte. Göttingen, Deutschland.

DOI:

https://doi.org/10.22320/s0718221x/2024.36

Keywords:

Coniophora puteana, Cryptotermes brevis, decay resistance, Macrotermes spp., durability, fungi, Nasutitermes corniger, thermal modification, termite, Trametes versicolor

Abstract

Thermal modification of wood is an environmentally friendly method to improve wood durability, mainly against microorganisms. By employing a process similar to the ThermoWood®, various Gmelina arborea (gamhar) wood specimens were thermally modified at 180 °C, 200 °C, and 220 °C for 3 hours. The effects of the thermal modification process on the resistance to decay by rot-fungi, and attack by subterranean, arboreal, and dry-wood termites were determined. Generally, the thermal modification improved the resistance of Gmelina arborea (gamhar) to decay by Trametes versicolor with increasing process temperature. However, the effect of the process was null on the resistance to biodeterioration by the brown-rot fungus Coniophora puteana and the dry-wood termites Cryptotermes brevis. Even so, the visual damage caused by Cryptotermes brevis was slight. Untreated and thermally modified woods recorded higher resistance to Coniophora puteana than Trametes versicolor. Mass loss caused by Nasutitermes corniger also decreased with increasing thermal modification temperature. According to the visual damage rating values, the attack by Nasutitermes corniger was slight. However, the thermal modification inversely impacted Gmelina arborea (gamhar) attack by Macrotermes sp., as its resistance in the field to the termites decreased with increasing modification temperature. Thus, the thermal modification process contributed to improving the decay resistance of the modified wood to white-rot fungus Trametes versicolor and attack by the arboreal termites Nasutitermes corniger exposed indoors. On the other hand, thermally modified Gmelina arborea (gamhar) wood was very susceptible to Macrotermes sp. in the field. This work would provide a reliable reference document to guide wood industry stakeholders in assessing the performance of untreated and thermally modified Gmelina arborea (gamhar) wood in situations exposed to fungi and termite species adopted.

Downloads

Download data is not yet available.

Author Biographies

Maxidite Minkah, Kwame Nkrumah University of Science and Technology. Department of Forest Resources Technology. Kumasi, Ghana.

Biography

Kojo Agyapong Afrifah, Kwame Nkrumah University of Science and Technology. Department of Wood Science and Technology. Kumasi, Ghana.

Biography

Charles Antwi-Boasiako, Kwame Nkrumah University of Science and Technology. Department of Wood Science and Technology. Kumasi, Ghana.

Biography

Ana Paula Soares da Silva, Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.

Biography

Jaqueline Rocha de Medeiros, Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.

Biography

Juarez Paes, Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.

Biography

Djeison Batista, Universidade Federal do Espírito Santo. Departamento de Ciências Florestais e da Madeira. Jerônimo Monteiro. Espirito Santo, Brasil.

Biography

Christian Brischke, Thünen-Institut für Holzforschung. Hamburg, Deutschland.

Biography

Holger Militz, Georg-August Universität Göttingen. Abteilung Holzbiologie und Holzprodukte. Göttingen, Deutschland.

Biography

References

Ali, A.C. 2011. Physical-Mechanical Properties and Natural Durability of Lesser Used Wood Species from Mozambique. Ph.D. Thesis, Department of Forest Products. Swedish University of Agricultural Sciences. Uppsala, Sweden. https://pub.epsilon.slu.se/8079

AWPA. 2016. Laboratory methods for evaluating the termite resistance of wood-based materials: choice and no-choice tests. AWPA Book of Standards, AWPA E1-16, Birmingham, Alabama.

Antwi-Boasiako, C.; Asamoah, A.; Atta-Boateng, A.; Frimpong-Mensah, K. 2011. Efficacy of extractives from parts of Ghanaian pawpaw, avocado, and neem on the durability of Alstonia. African Journal of Environmental Science and Technology 5(2): 131-135. https://www.ajol.info/index.php/ajest/article/view/71918

Batista, D. C. 2012. Industrial-scale thermal modification of Eucalyptus grandis wood using the Brazilian process VAP Holz Systeme. Ph.D. Thesis in Forest Engineering. Curitiba, Brazil. https://acervodigital.ufpr.br/bitstream/handle/1884/29709/R%20-%20T%20-%20DJEISON%20CESAR%20BATISTA.pdf?sequence=1&isAllowed=y

Batista, D.C.; Nisgoski, S.; Oliveira, J.T. da S.; de Muñiz, G.I.B.; Paes, J.B. 2016. Resistance of thermally modified Eucalyptus grandis W. Hill ex Maiden wood to deterioration by dry-wood termites (Cryptotermes sp.). Ciencia Florestal 26(2): 671-678. https://www.scielo.br/j/cflo/a/Dyd4sbDsypPk3S44CfHG33m/?lang=en&format=html

Boonstra, M. 2008. A two-stage thermal modification of wood. Ph.D. Thesis in Applied Biological Sciences: Soil and Forest Management, Henry Poincare University. Nancy, France. http://hdl.handle.net/1854/LU-468990

Brischke, C.; Meyer-Veltrup, L. 2016. Performance of thermally modified wood during 14 years of outdoor exposure. International Wood Products Journal 7(2): 89-95. https://doi.org/10.1080/20426445.2016.1160591

Brito, T.M.; Ferreira, T.M.; Silva, J.G.M. da.; Mendonça, A.R. de.; Fantuzzi Neto, H.; Paes, J.; Batista, D.C. 2022. Resistance to biodeterioration of thermally modified Eucalyptus grandis and Tectona grandis short-rotation wood. Wood Material Science & Engineering https://doi.org/10.1080/17480272.2022.2150985

Brocco, V.F.; Paes, J.B.; Costa, L.G.; Kirker, G.T.; Brazolin, S. 2020. Wood color changes and termiticidal properties of teak heartwood extract used as a wood preservative. Holzforschung 74(3): 233-245. https://doi.org/10.1515/hf-2019-0138

CEN/TS. 2005. Durability of wood and wood-based products. Determination of the natural durability of solid wood against wood-destroying fungi, test methods Part 2: Soft rotting micro-fungi. CEN/TS 15083-2. Brussels, Belgium.

Calonego, F. W. 2017. Technological characterization of thermally modified Schizolobium parahyba (Vell.) Blake wood. Ph.D. Thesis in Forest Science, State University of São Paulo Júlio de Mesquita Filho - Botucatu, Brazil. https://repositorio.unesp.br/bitstream/handle/11449/152371/calonego_fw_dr_bot.pdf?sequence=3&isAllowed=y

Calonego, F.W.; Severo, E.T.D.; Furtado, E.L. 2010. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 °C, 160 °C, 180 °C, 200 °C, and 220 °C. Bioresources Technology 101(23): 9391-9394. https://doi.org/10.1016/j.biortech.2010.06.119

de la Cruz, M.N.S.; Santos Júnior, H.M.; Rezende, C.M.; Alves, R.J.V.; Cancello, E.M.; Rocha, M.M. 2014. Terpenos em cupins do gênero Nasutitermes (Isoptera, Termitidae, Nasutitermitinae). Química Nova 37(1): 95-103. https://doi.org/10.1590/s0100-40422014000100018

Eaton, R.A.; Hale, M.D.C. 1993. Wood: Decay, Pests and Protection. Chapman & Hall: London, New York, 1993. ISBN 0-412-53120-8. https://cir.nii.ac.jp/crid/1130000794233641984

EN. 2021. Durability of wood and wood-based products - Test method against wood destroying basidiomycetes - Part 2: Assessment of inherent or enhanced durability. EN 113-2. Brussels, Belgium.

EN. 2015. Field test method for determining the relative protective effectiveness of a wood preservative in ground contact. EN 252. Brussels, Belgium.

EN. 2016. Durability of wood and wood-based products - Testing and classification of the durability to biological agents of wood and wood-based materials. EN 350. Brussels, Belgium.

Esteves, B.; Pereira, H. 2009. Wood modification by heat treatment: A Review. BioResources 4(1): 370-404. https://doi.org/10.15376/BIORES.4.1.370-404

Gonçalves, F.G.; Pinheiro, D.T.C.; Paes, J.B.; Carvalho, A.G.; Oliveira, G.L. 2013. Natural durability of timber forest species to dry-wood termite attack. Floresta e Ambiente 20(1):110-116. https://doi.org/10.4322/floram.2012.063

Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood-a review: chemical changes and hygroscopicity. Journal of Materials Science 56: 6581-6614. https://doi.org/10.1007/s10853-020-05722-z

Hakkou, M.; Petrissans.; M, Gerardin, P.; Zoulalian, A. 2006. Investigations of the reasons for fungal durability of heat-treated wood. Polymer Degradation and Stability 91(2): 393-397. https://doi.org/10.1016/j.polymdegradstab.2005.04.042

IPT. 1980. Ensaio acelerado de laboratório da resistência natural ou de madeira preservada ao ataque de térmitas do gênero Cryptotermes (Fam. Kalotermitidae). IPT/DIMAD D2. São Paulo, Brazil. (Publicação IPT, 1157).

ITTO. 2021. Lesser used species: Gmelina arborea. http://www.tropicaltimber.info/specie/melina-gmelina-arborea/?print=true

Jimenez Jr., J.P.; Acda, M.N.; Razal, R.A.; Madamba, P.S. 2011. Physico-mechanical properties and durability of thermally modified Malapapaya (Polyscias nodosa (Blume) Seem. Philippine Journal of Science 140(1): 13-23. https://philjournalsci.dost.gov.ph/home-1/33-vol-140-no-1-june-2011/431

Kamdem, D.P.; Pizzi, A.; Jermannaud, A. 2002. Durability of heat-treated wood. Holz als Roh- und Werkstoff 60(1): 1-6. https://doi.org/10.1007/s00107-001-0261-1

Korkut, D.S.; Guller, B. 2008. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology 99(8): 2846-2851. https://doi.org/10.1016/j.biortech.2007.06.043

Kvedaras, O.L.; Byrne, M.J.; Coombes, N.E.; Keeping, M.G. 2009. Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana Saccharina. Agricultural and Forest Entomology 11(3): 301-306. https://doi.org/10.1111/j.1461-9563.2009.00430.x

Lepage, E.; Salis, A.G.; Guedes, E.C.R. 2017. Tecnologia de proteção da madeira. São Paulo: Montana Química. ISBN 978-85-93610-00-4

Little, N.S.; Schultz, T.P.; Nicholas, D.D. 2010. Termite-resistant heartwood. Effect of antioxidants on termite feeding deterrence and mortality. Holzforschung 64(3): 395-398. https://doi.org/10.1515/hf.2010.053

Maistrello, L. 2018. Termites and standard norms in wood protection: a proposal targeting dry-wood termites. In: Khan, M.A.; Ahmad, W. (Eds.). Termites and sustainable management: economic losses and management. Springer, Cham 2(2): 261-287. https://doi.org/10.1007/978-3-319-68726-1_12

Mayes, D.; Oksanen, O. 2002. ThermoWood Handbook. Finnish Thermowood Association: Helsinki, Finland.

Medeiros, J. R. 2021. Effect of thermal modification on the biological resistance of Eucalyptus wood. Master’s Thesis in Forest Sciences, Federal University of Espírito Santo, Brazil. https://sappg.ufes.br/tese_drupal//tese_15226_Disserta%E7%E3o%20Final%20Jaqueline%202021.pdf

Metsä-Kortelainen, S.; Anitikainen, T.; Viitaniemi P. 2006. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C, and 230 °C. Holz als Roh- und Werkstoff 64: 192-197. https://doi.org/10.1007/s00107-005-0063-y

Minkah, M.A.; Afrifah, K.A.; Antwi-Boasiako, C.; Wentzel, M.; Batista, D.C.; Militz, H. 2021a. Physical and moisture sorption properties of thermally modified Gmelina arborea wood. Pro Ligno 17(1). 3-12. http://www.proligno.ro/en/articles/2021/1/MINKAH_Final.pdf

Minkah, M.A.; Afrifah, K.A.; Batista, D.C.; Militz, H. 2021b. Chemical and mechanical characterization of thermally modified Gmelina arborea wood. Les/Wood 70(1): 17-30. https://doi.org/10.26614/les-wood.2021.v70n01a02

Mitchual, S.J.; Minkah, M.A.; Owusu, F.W.; Okai, R. 2018. Planing and turning characteristics of Gmelina arborea grown in two ecological zones in Ghana. Advances in Research 14(2): 1-11. https://doi.org/10.9734/AIR/2018/39024

Mitchual, S.J.; Owusu, F.W.; Minkah, M.A. 2019. Sanding and shaping characteristics of Gmelina arborea grown in two ecological zones in Ghana. Journal of Engineering Research and Reports 4(3): 1-12. https://doi.org/10.9734/jerr/2019/v4i316904

Owoyemi, J.M.; Kayode, J.; Olaniran, S.O. 2011. Evaluation of the resistance of Gmelina arborea wood treated with creosote oil and liquid cashew nutshell to subterranean termites’ attack. Pro Ligno 7(2): 3-12. http://www.proligno.ro/en/articles/2011/2/owoyemi_full.pdf

Paes, J.B.; Morais V.M.; Lima C.R. 2004. Natural resistance of nine woods of semi-arid region of Brazil to wood-destroying fungi under laboratory conditions. Revista Árvore 28(2): 275-282. https://doi.org/10.1590/S0100-67622004000200014

Paes, J.B.; Segundinho, P.G.A.; Euflosino, A.E.R.; Silva, M.R.; Junior, C.C.; Oliveira, J.G.L. 2015. Resistance of thermally treated woods to Nasutitermes corniger in a food preference test. Madera & Bosques 1(21): 157-164. https://doi.org/10.21829/myb.2015.211439

Råberg, U.; Edlund M.L.; Terziev, N.; Land, C. 2005. Testing and evaluation of natural durability of wood in above-ground conditions in Europe - an overview. Journal of Wood Science 51: 429-440. https://doi.org/10.1007/s10086-005-0717-8

Sailer, M.; Rapp, A.; Leithoff, H. 2000. Improved resistance of Scots pine and spruce by application of an oil-heat treatment. In: International Research Group Wood Pre, Section 4-Processes, Nº IRG/WP 00-40162. Kona, Hawaii, USA. https://www.irg-wp.com/irgdocs/details.php?f9550d70-40d5-4587-8bd0-f7f39ca1536d

Sandberg, D.; Kutnar, A. 2015. Thermally modified Timber: Recent developments in Europe and North America. Wood and Fiber Science 48: 28 - 39. https://wfs.swst.org/index.php/wfs/article/view/2296

Sandberg, D.; Kutnar, A.; Mantanis, G. 2017. Wood modification technologies – a review. iForest - Biogeosciences and Forestry 10(6): 895-908. https://doi.org/10.3832/ifor2380-010

Severo, E.T.D.; Calonego, F.W.; Sansigolo, C.A. 2012. Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. elliottii by thermal modification. European Journal of Wood and Wood Products 70: 741-747. https://doi.org/10.1007/s00107-012-0611-1

Shi, J.L.; Kocaefe, D.; Amburgey, T.; Zhang, J. 2007. A comparative study on brown-rot fungus decay and subterranean termites resistance of thermally modified and ACQ-C-treated wood. Holz als Roh- und Werkstoff 65: 353-358. https://doi.org/10.1007/s00107-007-0178-4

Sivrikaya, H.; Can, A.; de Troya, T.; Conde, M. 2015. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei, and Hylotrupes bajulus. Maderas. Ciencia y Tecnología 17(3): 559 - 570. https://doi.org/10.4067/S0718-221X2015005000050

Sulaiman, A.; Lim, S.C. 1989. Some timber characteristics of Gmelina arborea grown in a plantation in peninsular Malaysia. Journal of Tropical Forest Science 2(2): 135-141. https://www.jstor.org/stable/23616353

Tjeerdsma, B.; Stevens, M.; Militz, H. 2000. Durability aspects of hydrothermal treated wood. International Research Group on Wood Preservation (Doc. No. IRG/WP 00 - 40160). https://www.irg-wp.com/irgdocs/search.php?deepSearch=yes&orderBy=score&offset=0&criteria=IRG%2FWP+00+%E2%80%93+40160&submit=Search

Viitanen, H.; Jämsä, S.; Paajanen, L.; Nurmi, A.; Viitaniemi, P. 1994. The effect of heat treatment on the properties of spruce. International Research Group on Wood Preservation (Doc. No. IRG/WP 94-40032). https://www.irg-wp.com/irgdocs/search.php?criteria=IRG%2FWP+94-40032&submit=Search&deepSearch=yes&yearfrom=&yearto=&orderBy=score&offset=0

Wang, J.Y.; Stirling, R.; Morris, P.I.; Taylor, A.; Lloyd, J.; Kirker, G.; Lebouw, S.; Mankowski, M.; Barnes, H.M.; Morrell, J.J. 2018. Durability of mass timber structures: A review of the biological risks. Wood and Fiber Science 50 (special issue): 110-127. https://doi.org/10.22382/wfs-2018-045

Weiland, J.J.; Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh- und Werkstoff 61(3): 216-220. https://doi.org/10.1007/s00107-003-0364-y

Downloads

Published

2024-03-19

How to Cite

Minkah, M., Afrifah, K. A. ., Antwi-Boasiako, C. ., Soares da Silva, A. P. ., Rocha de Medeiros, J. ., Paes, J., Batista, D., Brischke, C. ., & Militz, H. . (2024). Biological resistance of thermally modified Gmelina arborea wood. Maderas-Cienc Tecnol, 26. https://doi.org/10.22320/s0718221x/2024.36

Issue

Section

Article