The influence of road traffic and industrial plant-induced air pollution on the physical, mechanical, chemical and morphological properties of the black pine wood
DOI:
https://doi.org/10.22320/s0718221x/2024.40Keywords:
Black pine wood, industrial plant-induced air pollution, road traffic pollution, sustainable environment, wood characterizationAbstract
Road traffic pollution and industrial plant-induced pollution affect negatively the development of forest trees. How forest trees are affected by their growing environment is important for sustainable environment. The study aimed to investigate the physical, mechanical, chemical, and morphological properties of the Pinus nigra (black pine) tree which grows under different conditions. Tree samples were chosen from three different lands where were inside the forest (O), near the roadside (Y), and near the factory (F). It was studied whether there were any significant differences among the “O”, “Y” and “F” in terms of their wood properties such as physical, mechanical, chemical, and morphological. As a result, the “O” samples demonstrated more regular annual ring structure. On the other hand, it was observed that the “Y” samples had longer and wider tracheid cells. In addition, “Y” samples had better mechanical strength than “O” and “F”. Environmental pollution caused the presence of some different elements (chlorine and iron) in “Y” and “F”. As a result, it was determined that the trees growing near the roadside or near industrial plants have significant differences from forest trees which are far away from pollutions. It is possible to say that Pinus nigra (black pine) is resistant to environmental stress. For this reason, it can be recommended to use it as a barrier to reduce air pollution on the roadsides.
Downloads
References
Akyürek, Ş. 2019. Isıl işlemin Karaçam (Pinus nigra J.F var. şeneriana) odunu hücre ceperi bileşenleri ve kimyasal çözünürlükleri üzerine etkisinin araştırılması. Master thesis, Kutahya Dumlupinar Üniversity. https://acikbilim.yok.gov.tr/bitstream/handle/20.500.12812/661177/yokAcikBilim_10134411.pdf?sequence=-1&isAllowed=y
Anderegg, W.R.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; Pan, Y.; Raffa, K.; Sala, A.; Shaw, J.D.; Stephenson, N.L.; Christina Tague, C.; Zeppel, M. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208(3): 674-683.https://doi.org/10.1111/nph.13477
As, N.; Koç, H.; Doğu, D.; Atik, C.; Aksu, B.; Erdinler, S.2001. Türkiye’de yetişen endüstriyel öneme sahip ağaçların anatomik, fiziksel, mekanik ve kimyasal özellikleri. Journal of the Faculty of Forestry Istanbul University 51(1): 71-88. https://dergipark.org.tr/en/pub/jffiu/issue/18789/198728
Atar, M.2007. PVAc tutkalında viskozite değişiminin bazı ağaç malzemelerde yapışma direncine etkileri. Politeknik Dergisi 10(1): 85-91. https://dergipark.org.tr/en/pub/politeknik/issue/33024/367145
Bal, B.; Bektaş, İ. 2018. Kayın ve kavak odunlarında bazı fiziksel özelliklerle yoğunluk ilişkisinin belirlenmesi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi 1(1): 1-10. https://doi.org/10.33725/mamad.420917
Bhatti, G.; Iqbai, M.Z. 1988. Investigations into the effect of automobile exhausts on the phenology, periodicity and productivity of some roadside trees. Acta Societatis Botanicorum Poloniae 57(3): 395-399. https://doi.org/10.5586/asbp.1988.038
Bosela, M.; Kulla, L.; Roessiger, J.; Šebeň, V.; Dobor, L.; Büntgen, U.; Lukac, M. 2019. Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. Forest Ecology and Management 446: 293-303. https://doi.org/10.1016/j.foreco.2019.05.033.
Bussotti, F.; Pollastrini, M. 2021. Revisiting the concept of stress in forest trees at the time of global change and issues for stress monitoring. Plant Stress 2: e100013. https://doi.org/10.1016/j.stress.2021.100013
Delmastro, R.; Diaz-Vaz, J.E.; Schlatter, J. 1982. Variabilidad de las características tecnolóficas hereditables del Pinus radiata (D. Don). Santiago, Chile: Proyecto CONAF/PNUD/FAO. https://bibliotecadigital.infor.cl/handle/20.500.12220/6183
Dmuchowski, W.; Baczewska, A.; Brągoszewska, P. 2013. Reaction of street trees to adverse environmental conditions in the centre of Warsaw. Ecological Questions 15(1): 97-105.https://doi.org/10.12775/v10090-011-0041-4
Doğu, A.; Yılgör, N. 2001. Kütahya bölgesi karaçam (Pinus nigra L.) varyetelerinde (Pinus nigra var. pallasiana - Pinus nigra var. pyramidata) anatomik yapıların karşılaştırmalı incelenmesi. Journal of the Faculty of Forestry Istanbul University 51(2): 51-64. http://dx.doi.org/10.1079/cabicompendium.41664
Downes, G.; Drew, D. 2008. Climate and growth influences on wood formation and utilisation. Southern Forests: a Journal of Forest Science 70(2): 155-167. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.11.539
Fengel, D.; Wegener, G. 1984. Wood: chemistry, ultrastructure, reactions. ISBN 3-11-012059-3.. https://edisciplinas.usp.br/pluginfile.php/6459045/mod_resource/content/1/Wood%20Chemistry%20 Fengel%20and%20Wegener.pdf
Grote, R.; Gessler, A.; Hommel, R.; Poschenrieder, W.; Priesack, E. 2016. Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees 30(5): 1467-1482: https://doi.org/10.1007/s00468-016-1446-x
Guler, C.; Copur, Y.; Akgul, M.; Buyuksari, U. 2007. Some chemical, physical and mechanical properties of juvenile wood from black pine (Pinus nigra Arnold) plantations. Journal of Applied Sciences 7(5): 755-758. http://dx.doi.org/10.3923/jas.2007.755.758
Hamrick, J.L. 2004. Response of forest trees to global environmental changes. Forest Ecology and Management 197(1-3): 323-335. https://doi.org/10.1016/j.foreco.2004.05.023
Iqbal, M.; Shafiq, M.; Zaidi, S.; Athar, M. 2015. Effect of automobile pollution on chlorophyll content of roadside urban trees. Global Journal of Environmental Science and Management 1(4): 283-296. https://doi.org/10.7508/gjesm.2015.04.003
İstek, A.; Eroğlu, H.; Gülsoy, S. 2008. Karaçamın yaşına bağlı olarak lif ve kağıt özelliklerinin değişimi. Kastamonu University Journal of Forestry Faculty 8(1): 61-66. https://dergipark.org.tr/en/pub/kastorman/issue/17242/180126
Joshi, P.C.; Swami, A. 2007. Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar, India. Environmentalist 27(3): 365-374. https://doi.org/10.1007/s10669-007-9049-0
Judzentiene, A.; Stikliene, A.; Kupcinskiene, E. 2007. Changes in the essential oil composition in the needles of Scots pine (Pinus sylvestris L.) under anthropogenic stress. Scientific World Journal 7(S1): 141-150. https://doi.org/10.1100/tsw.2007.36
Khazaei, J. 2008. Water absorption characteristics of three wood varieties. Cercetări Agronomice În Moldova 41(2): 5-16. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/2662
Kiliç, A.; Sarıusta, S.E.; Hafizoğlu, H. 2010. Sarıçam, Karaçam ve Kızılçam basınç odununun kimyasal yapısı. Bartın Orman Fakültesi Dergisi 12(8): 33-39. https://dergipark.org.tr/en/download/article-file/300014
Köksal, S.; Pekgözlü, A. 2016. Sarıçam (Pinus sylvetris L.), Karaçam (Pinus nigra Arnold.) ve Kızılçam (Pinus brutia Ten.) Basınç Odununun Mikroskobik Yapısı. Düzce University Faculty of Forestry Journal of Forestry 12(1): 72-82. https://dergipark.org.tr/en/pub/duzceod/issue/24383/291043
Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of Wood Science and Technology. vol. 2. Springer: Berlin Heidelberg. https://doi.org/10.1007/978-3-642-87931-9
Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Dmitrieva, A.P.; Somova, A.V. 2021. Extremely high concentrations of zinc in birch tree leaves collected in Chelyabinsk, Russia. Environmental Geochemistry and Health 43(7): 2551-2570. https://doi.org/10.1007/S10653-020-00605-3
Krutul, D.; Dzbeński, W.; Makowski, T.; Zawadzki, J. 2006. Influence of environment pollution on the chemical composition of bark and wood of Scoth pine (Pinus sylvestris L.). In. Wood Structure and Properties. Arbora Publishers: Zvolen Slovokia. ISBN 80-967088-9-9
Krutul, D.; Zielenkiewicz, T.; Antczak, A.; Zawadzki, J.; Radomski, A.; Kupczyk, M.; Drożdżek, M. 2011. Influence of the environmental pollution on the chemical composition of bark and wood of trunk, branches and main roots of birch (Betula pendula Roth.). Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology 74: 242-248. https://www.cabidigitallibrary.org/doi/full/10.5555/20123177754
Krutul, D.; Zielenkiewicz, T.; Zawadzki, J.; Radomski, A.; Antczak, A.; Drożdżek, M. 2014. Influence of urban environment originated heavy metal pollution on the extractives and mineral substances content in bark and wood of oak (Quercus robur L.). Wood Research 59(1): 177-190. http://www.centrumdp.sk/wr/01/15.pdf
Kusiak, W.; Majka, J.; Ratajczak, I.; Górska, M.; Zborowska, M. 2020. Evaluation of Environmental Impact on Selected Properties of Lime (Tilia cordata Mill.) Wood. Forests 11(7): e746. https://doi.org/10.3390/f11070746
Leonelli, G.; Masseroli, A.; Pelfini, M. 2016. The influence of topographic variables on treeline trees under different environmental conditions. Physical Geography 37(1): 56-72. https://doi.org/10.1080/0272364 6.2016.1153377
Leštianska, A.; Fleischer, P.; Merganičová, K.; Fleischer, P.; Nalevanková, P.; Střelcová, K. 2023. Effect of Provenance and Environmental Factors on Tree Growth and Tree Water Status of Norway Spruce. Forests 14(1): e156. https://doi.org/10.3390/f14010156
Maeglin, R.R.; Wahlgren, H.E. 1972. Western Wood Density Survey. Report No. 2. US Department of Agriculture Forest Service Forest Product Laboratory: Madison, Wisconsin, USA.
Maher, B.A.; Ahmed, I.A.M.; Davison, B.; Karloukovski, V.; Clarke, R. 2013. Impact of roadside tree lines on indoor concentrations of traffic derived particulate matter. Environmental Science & Technology 47(23): 13737-13744. https://doi.org/10.1021/ES404363M
Mäkinen, H.; Hynynen, J. 2012. Predicting wood and tracheid properties of Scots pine. Forest Ecology and Management 279: 11-20. https://doi.org/10.1016/j.foreco.2012.05.024
Marais, B.N.; Brischke, C.; Militz, H. 2022. Wood durability in terrestrial and aquatic environments - A review of biotic and abiotic influence factors. Wood Material Science & Engineering 17(2): 82-105. https://doi.org/10.1080/17480272.2020.1779810
Mitchell, R.; Maher, B. 2009. Evaluation and application of biomagnetic monitoring of traffic derived particulate pollution. Atmospheric Environment 43(13): 2095-2103. https://doi.org/10.1016/j.atmosenv.2009.01.042
Niemz, P. 2010. Holz und Holzwerkstoffe: Skript zur Vorlesung Baustoffe I, Teil Holz und Holzwerkstoffe. ETH: Zurich. https://doi.org/10.3929/ethz-a-006180928
Niemz, P.; Sonderegger, W.; Keplinger, T.; Jiang, J.; Lu, J. 2023. Physical Properties of Wood and Wood-Based Materials. In Springer Handbook of Wood Science and Technology. vol. 1. Springer Science and Business Media: Deutschland GmbH, pp. 281-353. https://doi.org/10.1007/978-3-030-81315-4_6
Niemz, P.; Teischinger, A.; Sandberg, D. 2023. Springer Handbook of Wood Science and Technology. Ed. Niemz, P.; Teischinger, A.; Sandberg, D. vol. 1. Springer. http://dx.doi.org/10.1007/978-3-030-81315-4
Oberhuber, W.; Hammerle, A.; Kofler, W.2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science 6: e703. https://doi.org/10.3389/fpls.2015.00703
OGM. 2021. Orman Genel Müdürlüğü, Ormancılık İstatistikleri 2021. https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler.
Oliva, A.G.; Merino, V.B.; Seco, J.I.F.G.; García, M.C.; Prieto, E.H. 2006. Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Science and Technology 40(3): 190-204. https://doi.org/10.1007/s00226-005-0014-0
Ozdemir, H.2019. Mitigation impact of roadside trees on fine particle pollution. Science of The Total Environment 659: 1176-1185. https://doi.org/10.1016/j.scitotenv.2018.12.262
Paavilainen, L.1993. Importance of cross-dimensional fibre properties and coarseness for the characterisation of softwood sulphate pulp. Paperi Ja Puu 75(5): 343-351.https://research.aalto.fi/en/publications/importance-of-cross-dimensional-fibre-properties-and-coarseness-f
Perçin, O.; Özbay, G.; Ordu, M. 2009. Farklı tutkallarla lamine edilmiş ahşap malzemelerin mekaniksel özelliklerinin incelenmesi. Journal of Science and Technology of Dumlupınar University 019: 109-120. https://dergipark.org.tr/en/pub/dpufbed/issue/36100/405819
Pernestal, K.; Jonsson, B.; Larsson, B. 1995. A simple model for density of annual rings. Wood Science and Technology 29(6): https://doi.org/10.1007/BF00194202
Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. 2015. A Review on Air Pollution Monitoring and Management Using Plants With Special Reference to Foliar Dust Adsorption and Physiological Stress Responses. Critical Reviews in Environmental Science and Technology 45(23): 2489-2522. https://doi.org/10.1080/10643389.2015.1046775
Rowell, R. 2005. Handbook of Wood Chemistry and Wood Composites. In Handbook of Wood Chemistry and Wood Composites. CRC Press.https://doi.org/10.1201/9780203492437
Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. 2005. The Selection of Plant Materials for Street Trees, Park Trees and Urban Woodland. In Urban Forests and Trees pp. 257-280. Springer: Berlin Heidelberg. https://doi.org/10.1007/3-540-27684-X_11
Samara, C.; Kouimtzis, T.; Tsitouridou, R.; Kanias, G.; Simeonov, V. 2003. Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece. Atmospheric Environment 37(1): 41-54. https://doi.org/10.1016/S1352-2310(02)00772-0
Sensuła, B.; Fagel, N.; Michczyński, A. 2021. Radıocarbon, trace elements and pb ısotope composıtıon of pıne needles from a hıghly ındustrıalızed regıon ın southern poland. Radiocarbon 63(2): 713-726. https://doi.org/10.1017/RDC.2020.132
Seth, R.; Page, D. 1988. Fiber properties and tearing resistance. Tappi Journal 71(2): 103-107. https://cir.nii.ac.jp/crid/1570291226709405312
Shaheen, A.; Al-Toukhy, A.; Hajar, A. 2016. Particles Matters Accumulation and Anatomical Leaf Properties of Three Tree Species Growing in the Industrial Area in Jeddah, Saudi Arabia. Journal of King Abdulaziz University 26(2): 23-32.http://www.kau.edu.sa/Files/320/Researches/71536_44567.pdf
Sivrikaya, H.; Hafizoglu, H.; Yasav, A.; Aydemir, D. 2011. Natural weathering of oak (Quercus petrae) and chestnut (Castanea sativa) coated with various finishes. Color Research & Application 36(1): 72-78. https://doi.org/10.1002/col.20581
Szypowski, J. 2000. Proba doboru gatunkow i odmian drzew do nasadzen przyulicznych w Warszawie. Ogrodnictwo 3: 27-29. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-a2b990cc-5cff-4de1-bc37-469f392fbfe4
TAPPI. 1997. Technical Association for the Pulp, Paper, and converting Industry, Preparation Of Wood For Chemical Analysis. TAPPI 1997. T 264: Atlanta, GA.
TAPPI. 2006. Technical Association for the Pulp, Paper, and converting Industry, Acid-insoluble lignin in wood and pulp. TAPPI 1997. T 222: Atlanta, GA.
TAPPI. 2007. Technical Association for the Pulp, Paper, and converting Industry, Solvent extractıves of wood and pulp. TAPPI 1997. T 204: Atlanta, GA.
TAPPI. 1999. Technical Association for the Pulp, Paper, and converting Industry, Water solubility of wood and pulp. TAPPI 1997. T 207: Atlanta, GA.
TAPPI. 2018. Technical Association for the Pulp, Paper, and converting Industry, One percent sodium hydroxide solubility of wood and pulp. TAPPI 1997. T 212: Atlanta, GA.
TS. 1999. Wood- Based panels- Determination of modulus of elasticity in bending and of bending strength. EN 310. Türk Standartları Enstitüsü: Ankara, Turkey.
TS. 1999. Wood- Based panels- Sampling, cutting and inspection-Part 1: Sampling test pieces and expression of test results. EN 326-1. Türk Standartları Enstitüsü: Ankara, Turkey.
TS. 2005. Wood-based panels - Determination of moisture resistance under cyclic test conditions. EN 321. Türk Standartları Enstitüsü: Ankara, Turkey.
TS. 1999.Wood- Based panels- Determination of density. EN 323. Türk Standartları Enstitüsü: Ankara, Turkey.
TS. 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens-Part 5: Determination of strength in compression perpendicular to grain. ISO 13061-5. Türk Standartları Enstitüsü: Ankara, Turkey.
TS. 2022. Physical and mechanical properties of wood - Test methods for small clear wood specimens-Part 8: Determination of ultimate strength in shearing parallel to grain. ISO 13061-8. Türk Standartları Enstitüsü: Ankara, Turkey.
TS. 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 15: Determination of radial and tangential swelling. ISO 13061-15. Türk Standartları Enstitüsü: Ankara, Turkey.
Uner, B.; Karaman, İ.; Tanriverdi, H.; Özdemir, D. 2009. Prediction of Lignin and Extractive Content of Pinus nigra Arnold. var. Pallasiana Tree Using Near Infrared Spectroscopy and Multivariate Calibration. Journal of Wood Chemistry and Technology 29(1): 24-42. https://doi.org/10.1080/02773810802607567
Vospernik, S.; Nothdurft, A. 2018. Can trees at high elevations compensate for growth reductions at low elevations due to climate warming? Canadian Journal of Forest Research 48(6): 650-662. https://doi.org/10.1139/cjfr-2017-0326
Waliszewska, B.; Mleczek, M.; Zborowska, M.; Goliński, P.; Rutkowski, P.; Szentner, K. 2019. Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose 26(10): 6303-6315. https://doi.org/10.1007/S10570-019-02511-Z
Walker, J.C. 2006. Primary wood processing: principles and practice. 2nd ed. Springer.
Wang, H.; Maher, B.; Ahmed, I.; Davison, B. 2019. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: implications for roadside planting for improving the quality of urban air. Environmental Science & Technology 53(12): 6906-6916.https://doi.org/10.1021/acs.est.8b06629
Wise, L.E.; John, E.C. 1952. Wood Chemistry. 2nd ed. Reinhold Publication Co.
Wise, L.E.; Karl, H.L. 1962. Cellulose and hemicellulose in pulp and paper science and technology McGraw Hill-Book Co.
Wodzicki, T. 2001. Natural factors affecting wood structure. Wood Science and Technology 35(1): 5-26. https://doi.org/10.1007/s002260100085
Wuyts, K.; Hofman, J.; Van Wittenberghe, S.; Nuyts, G.; De Wael, K.; Samson, R. 2018. A new opportunity for biomagnetic monitoring of particulate pollution in an urban environment using tree branches. Atmospheric Environment 190: 177-187. https://doi.org/10.1016/j.atmosenv.2018.07.014
You, H.; Kwak, M.; Je, S.; Lee, J.; Lim, Y.; Land, H.K. 2021. Morpho-Physio-Biochemical Attributes of Roadside Trees as Potential Tools for Biomonitoring of Air Quality and Environmental Health in Urban Areas. Land 10(3): e236.https://doi.org/10.3390/land10030236
You, R.; Zhu, N.; Deng, X.; Wang, J.; Liu, F. 2021. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Scientific Reports 11(1): e4664. https://doi.org/10.1038/s41598-021-83500-w
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.