The influence of road traffic and industrial plant-induced air pollution on the physical, mechanical, chemical and morphological properties of the black pine wood

Authors

  • Suheyla Esin Koksal Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarci Vocational School. Forestry Department. Bolu, Turkey
  • Orhan Kelleci Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarci Vocational School. Forestry Department. Bolu, Turkey
  • Gul Tekingunduz Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarci Vocational School. Forestry Department. Bolu, Turkey
  • Deniz Aydemir Bartin University. Faculty of Forestry. Forest Industrial Engineering. Bartin, Turkey

DOI:

https://doi.org/10.22320/s0718221x/2024.40

Keywords:

Black pine wood, industrial plant-induced air pollution, road traffic pollution, sustainable environment, wood characterization

Abstract

Road traffic pollution and industrial plant-induced pollution affect negatively the development of forest trees. How forest trees are affected by their growing environment is important for sustainable environment. The study aimed to investigate the physical, mechanical, chemical, and morphological properties of the Pinus nigra (black pine) tree which grows under different conditions. Tree samples were chosen from three different lands where were inside the forest (O), near the roadside (Y), and near the factory (F). It was studied whether there were any significant differences among the “O”, “Y” and “F” in terms of their wood properties such as physical, mechanical, chemical, and morphological. As a result, the “O” samples demonstrated more regular annual ring structure. On the other hand, it was observed that the “Y” samples had longer and wider tracheid cells. In addition, “Y” samples had better mechanical strength than “O” and “F”. Environmental pollution caused the presence of some different elements (chlorine and iron) in “Y” and “F”. As a result, it was determined that the trees growing near the roadside or near industrial plants have significant differences from forest trees which are far away from pollutions. It is possible to say that Pinus nigra (black pine) is resistant to environmental stress. For this reason, it can be recommended to use it as a barrier to reduce air pollution on the roadsides.

Downloads

Download data is not yet available.

Author Biographies

Suheyla Esin Koksal, Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarci Vocational School. Forestry Department. Bolu, Turkey

Biography

Orhan Kelleci, Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarci Vocational School. Forestry Department. Bolu, Turkey

Biography

Gul Tekingunduz, Bolu Abant Izzet Baysal University. Mudurnu Sureyya Astarci Vocational School. Forestry Department. Bolu, Turkey

Biography

Deniz Aydemir, Bartin University. Faculty of Forestry. Forest Industrial Engineering. Bartin, Turkey

Biography

References

Akyürek, Ş. 2019. Isıl işlemin Karaçam (Pinus nigra J.F var. şeneriana) odunu hücre ceperi bileşenleri ve kimyasal çözünürlükleri üzerine etkisinin araştırılması (Master thesis, Kutahya Dumlupinar Üniversity). https://acikbilim.yok.gov.tr/bitstream/handle/20.500.12812/661177/yokAcikBilim_10134411.pdf?sequence=-1&isAllowed=y

Anderegg, W.R.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; Pan, Y.; Raffa, K.; Sala, A.; Shaw, J.D.; Stephenson, N.L.; Christina Tague, C.; Zeppel, M. 2015.Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208(3): 674-683.https://doi.org/10.1111/nph.13477 DOI: https://doi.org/10.1111/nph.13477

As, N.; Koç, H.; Doğu, D.; Atik, C.; Aksu, B.; Erdinler, S.2001. Türkiye’de yetişen endüstriyel öneme sahip ağaçların anatomik, fiziksel, mekanik ve kimyasal özellikleri. Journal of the Faculty of Forestry Istanbul University 51(1): 71-88. https://dergipark.org.tr/en/pub/jffiu/issue/18789/198728

Atar, M.2007. PVAc tutkalında viskozite değişiminin bazı ağaç malzemelerde yapışma direncine etkileri. Politeknik Dergisi 10(1): 85-91. https://dergipark.org.tr/en/pub/politeknik/issue/33024/367145

Bal, B.; Bektaş, İ. 2018. Kayın ve kavak odunlarında bazı fiziksel özelliklerle yoğunluk ilişkisinin belirlenmesi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi 1(1): 1-10. https://doi.org/10.33725/mamad.420917 DOI: https://doi.org/10.33725/mamad.420917

Bhatti, G.; Iqbai, M.Z. 1988. Investigations into the effect of automobile exhausts on the phenology, periodicity and productivity of some roadside trees. Acta Societatis Botanicorum Poloniae 57(3): 395-399. https://doi.org/10.5586/asbp.1988.038 DOI: https://doi.org/10.5586/asbp.1988.038

Bosela, M.; Kulla, L.; Roessiger, J.; Šebeň, V.; Dobor, L.; Büntgen, U.; Lukac, M. 2019. Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. Forest Ecology and Management 446: 293-303. https://doi.org/10.1016/j.foreco.2019.05.033. DOI: https://doi.org/10.1016/j.foreco.2019.05.033

Bussotti, F.; Pollastrini, M. 2021. Revisiting the concept of stress in forest trees at the time of global change and issues for stress monitoring. Plant Stress 2: e100013. https://doi.org/10.1016/j.stress.2021.100013 DOI: https://doi.org/10.1016/j.stress.2021.100013

Delmastro, R.; Diaz-Vaz, J.E.; Schlatter, J. 1982. Variabilidad de las características tecnolóficas hereditables del Pinus radiata (D. Don). Santiago, Chile: Proyecto CONAF/PNUD/FAO. https://bibliotecadigital.infor.cl/handle/20.500.12220/6183

Dmuchowski, W.; Baczewska, A.; Brągoszewska, P. 2013. Reaction of street trees to adverse environmental conditions in the centre of Warsaw. Ecological Questions 15(1): 97-105.https://doi.org/10.12775/v10090-011-0041-4 DOI: https://doi.org/10.12775/v10090-011-0041-4

Doğu, A.; Yılgör, N. 2001. Kütahya bölgesi karaçam (Pinus nigra L.) varyetelerinde (Pinus nigra var. pallasiana - Pinus nigra var. pyramidata) anatomik yapıların karşılaştırmalı incelenmesi. Journal of the Faculty of Forestry Istanbul University 51(2): 51-64. http://dx.doi.org/10.1079/cabicompendium.41664 DOI: https://doi.org/10.1079/cabicompendium.41664

Downes, G.; Drew, D. 2008. Climate and growth influences on wood formation and utilisation. Southern Forests: a Journal of Forest Science 70(2): 155-167. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.11.539 DOI: https://doi.org/10.2989/SOUTH.FOR.2008.70.2.11.539

Fengel, D.; Wegener, G. 1984. Wood: chemistry, ultrastructure. Reactions613: 1960-1982. https://edisciplinas.usp.br/pluginfile.php/6459045/mod_resource/content/1/Wood%20Chemistry%20Fengel%20and%20Wegener.pdf

Grote, R.; Gessler, A.; Hommel, R.; Poschenrieder, W.; Priesack, E. 2016. Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees 30(5): 1467-1482: https://doi.org/10.1007/s00468-016-1446-x DOI: https://doi.org/10.1007/s00468-016-1446-x

Guler, C.; Copur, Y.; Akgul, M.; Buyuksari, U. 2007. Some chemical, physical and mechanical properties of juvenile wood from black pine (Pinus nigra Arnold) plantations. Journal of Applied Sciences 7(5): 755-758. http://dx.doi.org/10.3923/jas.2007.755.758 DOI: https://doi.org/10.3923/jas.2007.755.758

Hamrick, J.L. 2004. Response of forest trees to global environmental changes. Forest Ecology and Management 197(1-3): 323-335. https://doi.org/10.1016/j.foreco.2004.05.023 DOI: https://doi.org/10.1016/j.foreco.2004.05.023

Iqbal, M.; Shafiq, M.; Zaidi, S.; Athar, M. 2015. Effect of automobile pollution on chlorophyll content of roadside urban trees. Global Journal of Environmental Science and Management 1(4): 283-296. https://doi.org/10.7508/gjesm.2015.04.003

İstek, A.; Eroğlu, H.; Gülsoy, S. 2008. Karaçamın yaşına bağlı olarak lif ve kağıt özelliklerinin değişimi. Kastamonu University Journal of Forestry Faculty 8(1): 61-66. https://dergipark.org.tr/en/pub/kastorman/issue/17242/180126

Joshi, P.C.; Swami, A. 2007. Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar, India. Environmentalist 27(3): 365-374. https://doi.org/10.1007/s10669-007-9049-0 DOI: https://doi.org/10.1007/s10669-007-9049-0

Judzentiene, A.; Stikliene, A.; Kupcinskiene, E. 2007. Changes in the essential oil composition in the needles of Scots pine (Pinus sylvestris L.) under anthropogenic stress. Scientific World Journal 7(S1): 141-150.https://doi.org/10.1100/tsw.2007.36 DOI: https://doi.org/10.1100/tsw.2007.36

Khazaei, J. 2008. Water absorption characteristics of three wood varieties. Cercetări Agronomice În Moldova 41(2): 5-16. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/2662

Kiliç, A.; Sarıusta, S.E.; Hafizoğlu, H. 2010. Sarıçam, Karaçam ve Kızılçam basınç odununun kimyasal yapısı. Bartın Orman Fakültesi Dergisi 12(8): 33-39. https://dergipark.org.tr/en/download/article-file/300014

Köksal, S.; Pekgözlü, A. 2016. Sarıçam (Pinus sylvetris L.), Karaçam (Pinus nigra Arnold.) ve Kızılçam (Pinus brutia Ten.) Basınç Odununun Mikroskobik Yapısı. Düzce University Faculty of Forestry Journal of Forestry 12(1): 72-82. https://dergipark.org.tr/en/pub/duzceod/issue/24383/291043

Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of Wood Science and Technology. vol. 2. Springer: Berlin Heidelberg. https://doi.org/10.1007/978-3-642-87931-9 DOI: https://doi.org/10.1007/978-3-642-87931-9

Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Dmitrieva, A.P.; Somova, A.V. 2021. Extremely high concentrations of zinc in birch tree leaves collected in Chelyabinsk, Russia. Environmental Geochemistry and Health 43(7): 2551-2570. https://doi.org/10.1007/S10653-020-00605-3 DOI: https://doi.org/10.1007/s10653-020-00605-3

Krutul, D.; Dzbeński, W.; Makowski, T.; Zawadzki, J. 2006. Influence of environment pollution on the chemical composition of bark and wood of Scoth pine (Pinus sylvestris L.). Wood Structure and Properties. Zvolen Slovokia, pp: 67-70.ISBN: 80-967088-9-9

Krutul, D.; Zielenkiewicz, T.; Antczak, A.; Zawadzki, J.; Radomski, A.; Kupczyk, M.; Drożdżek, M. 2011. Influence of the environmental pollution on the chemical composition of bark and wood of trunk, branches and main roots of birch (Betula pendula Roth.). Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology 74: 242-248. https://www.cabidigitallibrary.org/doi/full/10.5555/20123177754

Krutul, D.; Zielenkiewicz, T.; Zawadzki, J.; Radomski, A.; Antczak, A.; Drożdżek, M. 2014. Influence of urban environment originated heavy metal pollution on the extractives and mineral substances content in bark and wood of oak (Quercus robur L.). Wood Research 59(1): 177-190. http://www.centrumdp.sk/wr/01/15.pdf

Kusiak, W.; Majka, J.; Ratajczak, I.; Górska, M.; Zborowska, M. 2020. Evaluation of Environmental Impact on Selected Properties of Lime (Tilia cordata Mill.) Wood. Forests 11(7): e746.https://doi.org/10.3390/f11070746 DOI: https://doi.org/10.3390/f11070746

Leonelli, G.; Masseroli, A.; Pelfini, M. 2016. The influence of topographic variables on treeline trees under different environmental conditions. Physical Geography 37(1): 56-72. https://doi.org/10.1080/02723646.2016.1153377 DOI: https://doi.org/10.1080/02723646.2016.1153377

Leštianska, A.; Fleischer, P.; Merganičová, K.; Fleischer, P.; Nalevanková, P.; Střelcová, K. 2023. Effect of Provenance and Environmental Factors on Tree Growth and Tree Water Status of Norway Spruce. Forests 14(1): e156. https://doi.org/10.3390/f14010156 DOI: https://doi.org/10.3390/f14010156

Maeglin, R.R.; Wahlgren, H.E. 1972. Western Wood Density Survey: Report No. 2. US Department of Agriculture Forest Service Forest Product Laboratory, Madison, Wisconsin, USA.

Maher, B.A.; Ahmed, I.A.M.; Davison, B.; Karloukovski, V.; Clarke, R. 2013. Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter. Environmental Science & Technology 47(23): 13737-13744. https://doi.org/10.1021/ES404363M DOI: https://doi.org/10.1021/es404363m

Mäkinen, H.; Hynynen, J. 2012. Predicting wood and tracheid properties of Scots pine. Forest Ecology and Management 279: 11-20. https://doi.org/10.1016/j.foreco.2012.05.024 DOI: https://doi.org/10.1016/j.foreco.2012.05.024

Marais, B.N.; Brischke, C.; Militz, H. 2022. Wood durability in terrestrial and aquatic environments - A review of biotic and abiotic influence factors. Wood Material Science & Engineering 17(2): 82-105. https://doi.org/10.1080/17480272.2020.1779810 DOI: https://doi.org/10.1080/17480272.2020.1779810

Mitchell, R.; Maher, B. 2009. Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution. Atmospheric Environment 43(13): 2095-2103. https://doi.org/10.1016/j.atmosenv.2009.01.042 DOI: https://doi.org/10.1016/j.atmosenv.2009.01.042

Niemz, P. 2010. Holz und Holzwerkstoffe: Skript zur Vorlesung Baustoffe I, Teil Holz und Holzwerkstoffe. Zurich. https://doi.org/10.3929/ethz-a-006180928

Niemz, P.; Sonderegger, W.; Keplinger, T.; Jiang, J.; Lu, J. 2023. Physical Properties of Wood and Wood-Based Materials. In Springer Handbooks. vol. 1. Springer Science and Business Media: Deutschland GmbH, pp. 281-353. https://doi.org/10.1007/978-3-030-81315-4_6 DOI: https://doi.org/10.1007/978-3-030-81315-4_6

Niemz, P.; Teischinger, A.; Sandberg, D. 2023. Springer Handbook of Wood Science and Technology. Ed. Niemz, P.; Teischinger, A.; Sandberg, D. vol. 1. Springer. http://dx.doi.org/10.1007/978-3-030-81315-4 DOI: https://doi.org/10.1007/978-3-030-81315-4

Oberhuber, W.; Hammerle, A.; Kofler, W.2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science 6: e703. https://doi.org/10.3389/fpls.2015.00703 DOI: https://doi.org/10.3389/fpls.2015.00703

OGM. 2021. Orman Genel Müdürlüğü, Ormancılık İstatistikleri 2021. In https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler.

Oliva, A.G.; Merino, V.B.; Seco, J.I.F.G.; García, M.C.; Prieto, E.H. 2006. Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Science and Technology 40(3): 190-204. https://doi.org/10.1007/s00226-005-0014-0 DOI: https://doi.org/10.1007/s00226-005-0014-0

Ozdemir, H.2019. Mitigation impact of roadside trees on fine particle pollution. Science of The Total Environment 659: 1176-1185. https://doi.org/10.1016/j.scitotenv.2018.12.262 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.262

Paavilainen, L.1993. Importance of cross-dimensional fibre properties and coarseness for the characterisation of softwood sulphate pulp. Paperi Ja Puu 75(5): 343-351.https://research.aalto.fi/en/publications/importance-of-cross-dimensional-fibre-properties-and-coarseness-f

Perçin, O.; Özbay, G.; Ordu, M. 2009. Farklı tutkallarla lamine edilmiş ahşap malzemelerin mekaniksel özelliklerinin incelenmesi. Journal of Science and Technology of Dumlupınar University 019: 109-120.https://dergipark.org.tr/en/pub/dpufbed/issue/36100/405819

Pernestal, K.; Jonsson, B.; Larsson, B. 1995. A simple model for density of annual rings. Wood Science and Technology 29(6): https://doi.org/10.1007/BF00194202 DOI: https://doi.org/10.1007/BF00194202

Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. 2015. A Review on Air Pollution Monitoring and Management Using Plants With Special Reference to Foliar Dust Adsorption and Physiological Stress Responses. Critical Reviews in Environmental Science and Technology 45(23): 2489-2522. https://doi.org/10.1080/10643389.2015.1046775 DOI: https://doi.org/10.1080/10643389.2015.1046775

Rowell, R. 2005. Handbook of Wood Chemistry and Wood Composites. In Handbook of Wood Chemistry and Wood Composites. CRC Press.https://doi.org/10.1201/9780203492437 DOI: https://doi.org/10.1201/9780203492437

Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. 2005. The Selection of Plant Materials for Street Trees, Park Trees and Urban Woodland. In Urban Forests and Trees pp. 257-280. Springer: Berlin Heidelberg. https://doi.org/10.1007/3-540-27684-X_11 DOI: https://doi.org/10.1007/3-540-27684-X_11

Samara, C.; Kouimtzis, T.; Tsitouridou, R.; Kanias, G.; Simeonov, V. 2003. Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece. Atmospheric Environment 37(1): 41-54. https://doi.org/10.1016/S1352-2310(02)00772-0 DOI: https://doi.org/10.1016/S1352-2310(02)00772-0

Sensuła, B.; Fagel, N.; Michczyński, A. 2021. Radıocarbon, trace elements and pb ısotope composıtıon of pıne needles from a hıghly ındustrıalızed regıon ın southern poland. Radiocarbon 63(2): 713-726. https://doi.org/10.1017/RDC.2020.132 DOI: https://doi.org/10.1017/RDC.2020.132

Seth, R.; Page, D. 1988. Fiber properties and tearing resistance. Tappi Journal 71(2): 103-107. https://cir.nii.ac.jp/crid/1570291226709405312

Shaheen, A.; Al-Toukhy, A.; Hajar, A. 2016. Particles Matters Accumulation and Anatomical Leaf Properties of Three Tree Species Growing in the Industrial Area in Jeddah, Saudi Arabia. Journal of King Abdulaziz University 26(2): 23-32.http://www.kau.edu.sa/Files/320/Researches/71536_44567.pdf DOI: https://doi.org/10.4197/Met.26-2.3

Sivrikaya, H.; Hafizoglu, H.; Yasav, A.; Aydemir, D. 2011. Natural weathering of oak (Quercus petrae) and chestnut (Castanea sativa) coated with various finishes. Color Research & Application 36(1): 72-78. https://doi.org/10.1002/col.20581 DOI: https://doi.org/10.1002/col.20581

Szypowski, J. 2000. Proba doboru gatunkow i odmian drzew do nasadzen przyulicznych w Warszawie. Ogrodnictwo 3: 27-29. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-a2b990cc-5cff-4de1-bc37-469f392fbfe4

TAPPI. 1997. Technical Association for the Pulp, Paper, and converting Industry, Preparation Of Wood For Chemical Analysis. TAPPI 1997. T 264: Atlanta, GA.

TAPPI. 2006. Technical Association for the Pulp, Paper, and converting Industry, Acid-insoluble lignin in wood and pulp. TAPPI 1997. T 222: Atlanta, GA.

TAPPI. 2007. Technical Association for the Pulp, Paper, and converting Industry, Solvent extractıves of wood and pulp. TAPPI 1997. T 204: Atlanta, GA.

TAPPI. 1999. Technical Association for the Pulp, Paper, and converting Industry, Water solubility of wood and pulp. TAPPI 1997. T 207: Atlanta, GA.

TAPPI. 2018. Technical Association for the Pulp, Paper, and converting Industry, One percent sodium hydroxide solubility of wood and pulp. TAPPI 1997. T 212: Atlanta, GA.

TS. 1999. Wood- Based panels- Determination of modulus of elasticity in bending and of bending strength. EN 310. Türk Standartları Enstitüsü: Ankara, Turkey.

TS. 1999. Wood- Based panels- Sampling, cutting and inspection- Part 1: Sampling test pieces and expression of test results. EN 326-1. Türk Standartları Enstitüsü: Ankara, Turkey.

TS. 2005. Wood-based panels - Determination of moisture resistance under cyclic test conditions. EN 321. Türk Standartları Enstitüsü: Ankara, Turkey.

TS. 1999.Wood- Based panels- Determination of density. EN 323. Türk Standartları Enstitüsü: Ankara, Turkey.

TS. 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 5: Determination of strength in compression perpendicular to grain. ISO 13061-5. Türk Standartları Enstitüsü: Ankara, Turkey.

TS. 2022. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 8: Determination of ultimate strength in shearing parallel to grain. ISO 13061-8. Türk Standartları Enstitüsü: Ankara, Turkey.

TS. 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 15: Determination of radial and tangential swelling. ISO 13061-15. Türk Standartları Enstitüsü: Ankara, Turkey.

Uner, B.; Karaman, İ.; Tanriverdi, H.; Özdemir, D. 2009. Prediction of Lignin and Extractive Content of Pinus nigra Arnold. var. Pallasiana Tree Using Near Infrared Spectroscopy and Multivariate Calibration. Journal of Wood Chemistry and Technology 29(1): 24-42. https://doi.org/10.1080/02773810802607567 DOI: https://doi.org/10.1080/02773810802607567

Vospernik, S.; Nothdurft, A. 2018. Can trees at high elevations compensate for growth reductions at low elevations due to climate warming? Canadian Journal of Forest Research 48(6): 650-662. https://doi.org/10.1139/cjfr-2017-0326 DOI: https://doi.org/10.1139/cjfr-2017-0326

Waliszewska, B.; Mleczek, M.; Zborowska, M.; Goliński, P.; Rutkowski, P.; Szentner, K. 2019. Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose 26(10): 6303-6315. https://doi.org/10.1007/S10570-019-02511-Z DOI: https://doi.org/10.1007/s10570-019-02511-z

Walker, J.C. 2006. Primary wood processing: principles and practice. 2nd ed. Springer.

Wang, H.; Maher, B.; Ahmed, I.; Davison, B. 2019. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: implications for roadside planting for improving the quality of urban air. Environmental Science & Technology 53(12): 6906-6916.https://doi.org/10.1021/acs.est.8b06629 DOI: https://doi.org/10.1021/acs.est.8b06629

Wise, L.E.; John, E.C. 1952. Wood Chemistry (2nd ed., Vols. 1-2). Reinhold Publication Co.

Wise, L.E.; Karl, H.L. 1962. Cellulose and hemicellulose in pulp and paper science and technology. McGraw Hill-Book Co.

Wodzicki, T. 2001. Natural factors affecting wood structure. Wood Science and Technology, 35(1), 5-26. https://doi.org/10.1007/s002260100085 DOI: https://doi.org/10.1007/s002260100085

Wuyts, K.; Hofman, J.; Van Wittenberghe, S.; Nuyts, G.; De Wael, K.; Samson, R. 2018. A new opportunity for biomagnetic monitoring of particulate pollution in an urban environment using tree branches. Atmospheric Environment 190: 177-187. https://doi.org/10.1016/j.atmosenv.2018.07.014 DOI: https://doi.org/10.1016/j.atmosenv.2018.07.014

You, H.; Kwak, M.; Je, S.; Lee, J.; Lim, Y.; Land, H.K. 2021. Morpho-Physio-Biochemical Attributes of Roadside Trees as Potential Tools for Biomonitoring of Air Quality and Environmental Health in Urban Areas. Land 10(3): e236.https://www.mdpi.com/1012014 DOI: https://doi.org/10.3390/land10030236

You, R.; Zhu, N.; Deng, X.; Wang, J.; Liu, F. 2021. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Scientific Reports 11(1): e4664. https://doi.org/10.1038/s41598-021-83500-w DOI: https://doi.org/10.1038/s41598-021-83500-w

Downloads

Published

2024-05-03

How to Cite

Koksal, S. E., Kelleci, O. ., Tekingunduz, G. ., & Aydemir, D. . (2024). The influence of road traffic and industrial plant-induced air pollution on the physical, mechanical, chemical and morphological properties of the black pine wood. Maderas-Cienc Tecnol, 26. https://doi.org/10.22320/s0718221x/2024.40

Issue

Section

Article