Variation in specific gravity and shrinkage of tapped rubberwood
DOI:
https://doi.org/10.22320/s0718221x/2024.50Keywords:
Hevea brasiliensis, rubberwood, lumber, specific gravity, tapping duration, wood shrinkageAbstract
Hevea brasiliensis (rubber tree), a major source of natural rubber, could also be an important source of lumber as senescence occurs. However, latex collection is known to affect Hevea brasiliensis (rubber tree) wood formation and consequently, wood properties. The impact tapping (cutting made in the bark of the tree for latex harvest) has on the tree and the way the tree responds after tapping is often overlooked. Knowledge on wood properties of tapped rubber trees in Nigeria would enhance its sustainable utilization which is especially important in developing countries where lumber is limited. Variation in specific gravity and shrinkage of rubberwood wood due to tapping duration was examined. Tapping duration had significant effect in specific gravity and longitudinal shrinkage of rubberwood but had no effect on tangential and radial shrinkage. The specific gravity (SG) of rubberwood ranged from 0,55 - 0,59. Longitudinal shrinkage (average 1,42 %) was higher than typically observed for mature wood. Average tangential shrinkage for rubberwood of all the ages was 5,37 % while radial shrinkage ranged from 2,87 % to 3,84 %. decrease in SG observed in trees tapped for 20 years may indicate the initiation of senescence. Tapped rubberwood could be used in areas not exposed to high moisture as well as in other wood composites.
Downloads
References
Annamalainathan, K.; Krishnakumar, R.; Jacob, J. 2001. Tapping induced changes in respiratory metabolism, ATP production and reactive oxygen species scavenging in Hevea. Journal of Rubber Research 4: 245-254. https://www.cabidigitallibrary.org/doi/full/10.5555/20023103783
Balsiger, J.; Bahdon, J.; Whiteman, A. 2000. The utilization, processing and demand for rubberwood as a source of wood supply. Asia-Pacific Forestry Sector APFS-Working Paper No. APFSOS/WP/50. FAO: Bangkok, Thailand. https://www.academia.edu/2093552/J_Balsiger_2000_The_utilization_processing_and_demand_for_rubberwood_as_a_source_of_wood_supply
Bauer, K. 2003. Development and optimization of a low – temperature drying schedule for Eucalyptus grandis (Hill) ex Maiden in a solar-assisted timber dryer. PhD Dissertation, Universität Hohenheim, Germany. https://www.yumpu.com/en/document/read/6032665/development-and-optimisation-of-a-low-temperature-drying-
Binang, W.B.; Ittah, M.A.; Edem, E.E.; Essoka, A. 2017. Ecological characteristics of Para Rubber (Hevea brasiliensis Muell. Arg) productivity in the Niger Delta Region of Nigeria. International Journal of Plant and Soil Science 14(4): 1-10. https://doi.org/10.9734/IJPSS/2017/30582 DOI: https://doi.org/10.9734/IJPSS/2017/30582
Bodig, J.; Jayne, B.A. 1993. Mechanics of wood and wood composites. Krieger Publishing Company: Malabar, FL, USA.
Chudnoff, M. 1980. Tropical timbers of the world. United States Department of Agriculture, Forest Service, Forest Products Laboratory. 831p. https://apps.dtic.mil/sti/pdfs/ADA086073.pdf
Clatterbuck, W.K. 2017. Tree wounds - response of trees and what you can do. University of Tennessee, UT Extension publication: USA. SP 683. https://utia.tennessee.edu/publications/wp-content/uploads/sites/269/2023/10/SP683.pdf
Emerhi, E.A. 1992. Variations in extractive and mineral contents and in wood density of some mangrove tree species in Nigeria. PhD thesis submitted to the department of forest resources management. University of Ibadan, Ibadan, Nigeria. P.6-7.
FAO. 1977. The rubber tree. Better Farming Series. FAO Economic and Social Development Series 3(25). ISBN 92-5-100156-1. https://www.fao.org/4/AD221E/AD221E00.htm
Kainulainen, O. 2007. Efficiency of sawmill operations and the role of rubber smallholdings in the rubberwood supply in Thailand. Master’s thesis, Department of Forest Resource Management. University of Helsinki, Finland.
Khoo, P.S.; Chin, K.L.; H'ng, P.S.; Baker, E.S.; Lee, C.L.; Go, W.Z.; Dahali, R. 2019. Physical properties and bonding quality of laminated veneer lumber produced with veneers peeled from small diameter rubberwood logs. Royal Society Open Science 6(12): e 191763. https://doi.org/10.1098/rsos.191763 DOI: https://doi.org/10.1098/rsos.191763
Kretschmann, D.E.; Cramer, S.M. 2007. The role of earlywood and latewood properties on dimensional stability of loblolly pine. The Compromised Wood Workshop. Christchurch, New Zealand. January 29 - 31, 2007. 24p. https://www.fpl.fs.usda.gov/documnts/pdf2007/fpl_2007_kretschmann002.pdf
Lee, Y.H. 1982. Malaysian timbers-rubber wood. Malaysian Forest Service Trade Leaflet No. 58. Kepong. Malaysia: Malaysian Timber Industry Board, p.9.
Lim, S.C.; Gan, K.S.; Choo, K.T. 2003. The characteristics, properties, and uses of plantation timbers - Rubberwood and Acacia mangium. Timber Technology Bulletin, Kuala Lumpur, Malaysia No. 26. https://info.frim.gov.my/infocenter/booksonline/ttb/TTBno26.pdf
Majumdar, M.S.M.; Das, A.K.; Shams, M.I.; Chowdhury, M.Q. 2014. Effect of age and height position on physical and mechanical properties of rubber wood (Hevea brasiliensis) of Bangladesh. Bangladesh Journal of Scientific and Industrial Research 49(2): 79-84. https://doi.org/10.3329/bjsir.v49i2.22000 DOI: https://doi.org/10.3329/bjsir.v49i2.22000
Mohd Shukari, M. 1999. Physical and mechanical properties of rubberwood. In: Hong L. T.; Sim H. C. (eds). Rubberwood- processing and utilization. Forest Research Institute Malaysia (FRIM): Kepong, p.33-42.
Metzler, B.; Hecht, U. 2014. Wood structure and fungal attack following injuries to bark. https://www.waldwissen.net/en/forestry/forest-protection/wood-structure-and-injuries-to-bark
Naji, H.R.; Baker, E.S.; Sahri, M.H.; Nobuchi, T.; Ebadi S.E. 2011. The effect of growth rate on wood density and anatomical characteristics of Rubberwood (Hevea brasiliensis Muell. Arg.) in two different clonal trails. Journal of Natural Product and Plant Resources 1(2): 71-80. https://www.cabidigitallibrary.org/doi/full/10.5555/20113289886
Naji, H.R.; Sahri, M.H.; Nobuchi, T.; Baker, E.S. 2012. Clonal and planting density of rubberwood (Hevea brasiliensis Muell. Arg.) BioResources 7(1): 189-202. http://dx.doi.org/10.15376/biores.7.1.189-202 DOI: https://doi.org/10.15376/biores.7.1.189-202
Naji, H.R.; Bakar, E.S.; Sahri, M.H.; Soltani, M.; Abdul Hamid, H.; Ebadi, S.E. 2014. Variation in mechanical properties of two rubberwood clones in relation to planting density. Journal of Tropical Forest Science 26(4): 503-512. https://www.jstor.org/stable/43150936
Norton, D.A. 1998. Impacts of tree coring on indigenous trees. Conservation Advisory Science Notes No. 186. Department of Conservation, Wellington. https://www.doc.govt.nz/globalassets/documents/science-and-technical/casn186.pdf
Norul Izani, M.A.; Hamami, S.M. 2008. Wood and cellular properties of four new Hevea species. In Proceedings of the FORTROP II International Conference: Tropical forestry change in a changing world. Kasetsart University, Thailand. https://agkb.lib.ku.ac.th/ku/search_detail/result/197843
Nwokolo, E. 1996. 333-344. Rubber (Hevea brasiliensis L.) seed, oil and meal. In: Food and Feed from Legumes and Oilseeds. Nwokolo, E.; Smartt, J. (Eds). Springer: Boston, MA, USA. https://doi.org/10.1007/978-1-4613-0433-3_35 DOI: https://doi.org/10.1007/978-1-4613-0433-3_35
Ogunsanwo, O.Y.; Erakhrumen, A.A.; Adetogun, A.C.; Ajala, O.O. 2005. Strength properties of tapped rubber wood (Hevea brasiliensis Muell. Arg.) in the University of Ibadan rubber plantation. Ibadan Journal of Agricultural Research 1(2): 56-60. http://ijar.org.ng/wp-content/uploads/2019/06/9-strength-properties-of-tapped-rubber-wood.pdf
Omo-Ikerodah, E.E.; Ehika, S.N.; Egharevba, O.; Waizah, Y.; Mokwunye, M.U.B.; Orimoloye, O. 2011. Exploitation systems of Hevea trees amongst smallholders in Nigeria. Researcher 3(12): 23-29. http://www.sciencepub.net/researcher/research0312/006_7587research0312_23_29.pdf
Onakpoma, I. 2019. Wood properties of tapped Rubber tree (Hevea brasiliensis Muell. Arg.) in Agbarha, Delta State, Nigeria. Thesis submitted to the department of forest resources management, University of Ibadan, Ibadan, Nigeria. http://140.105.46.132:8080/xmlui/handle/123456789/907
Panshin, A.J.; De Zeeuw, C.H. 1980. Textbook of wood technology. Vol. I. McGrawHill: New York, USA. 722 pp. https://www.cabidigitallibrary.org/doi/full/10.5555/19810669130
Payn, T.; Carnus, J.; Freer-Smith, P.; Orazio, C.; Nabuurs, G.J. 2014. Third international congress on planted forests: planted forests on the globe - renewable resources for the future. New Zealand Journal of Forestry Science 44 (S1). https://doi.org/10.1186/1179-5395-44-S1-S1 DOI: https://doi.org/10.1186/1179-5395-44-S1-S1
Payn, T.; Carnus, J.M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.I. 2015. Changes in planted forests and future global implications. Forest Ecology and Management 352: 57-67. http://dx.doi.org/10.1016/j.foreco.2015.06.021 DOI: https://doi.org/10.1016/j.foreco.2015.06.021
R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ratnasingam, J.; Grohmann, R.; Scholz, F. 2010. Drying quality of rubberwood: an industrial perspective. European Journal of Wood and Wood Products 68: 115-116. https://doi.org/10.1007/s00107-009-0353-x DOI: https://doi.org/10.1007/s00107-009-0353-x
Ratnasingam, J.; Ioras, F.; Wenming, L. 2011. Sustainability of the rubberwood sector in Malaysia. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2): 305-311. https://doi.org/10.15835/nbha3927195 DOI: https://doi.org/10.15835/nbha3927195
Reghu, C.P.; Thomas, J.; Matthew, F.; Marattukalam, J.G.; Annamma, V.Y. 2006. Variation in certain structural and physical properties of wood of ten clones of Hevea brasiliensis. Journal of Plantation Crops 34(3): 186-191. https://www.cabidigitallibrary.org/doi/full/10.5555/20073226665
Roslan, M. 1998. Juvenility in Rubberwood (Hevea brasiliensis) and its relation with the physical and mechanical properties. M.Sc. Thesis. Faculty of Forestry, UPM. http://psasir.upm.edu.my/id/eprint/9957/1/FH_1998_5_A.pdf
Sik, H.S.; Choo, K.T.; Sarani, Z.; Sahrim, A.; How, S.S.; Omar, M.K.M. 2009. Influence of drying temperature on the physical and mechanical properties of rubberwood. Journal of Tropical Forest Science 21: 181-189. https://www.frim.gov.my/v1/JTFSOnline/jtfs/v21n3/181-189.pdf
Silpi, U.; Thaler, P.; Kasemsap, P.; Lacointe, A.; Chantuma, A.; Adam, B.; Gohet, E.; Thanisawanyangkura, S.; Améglio, T. 2006. Effect of tapping activity on the dynamics of radial growth of Hevea brasiliensis trees. Tree Physiology 26: 1579-1587. https://doi.org/10.1093/treephys/26.12.1579 DOI: https://doi.org/10.1093/treephys/26.12.1579
Smith, K.T. 2015. Compartmentalization, resource allocation, and wood quality. Current Forestry Reports 1:8-15. https://doi.org/10.1007/s40725-014-0002-4 DOI: https://doi.org/10.1007/s40725-014-0002-4
Tembe, E.T.; Amonum, J.I.; Shomkegh, S.A. 2010. Variations in the Fibre Length of Rubber Wood (Hevea brasiliensis (Kunth) Muell. Arg.) Grown In South Eastern Nigeria. Journal of Research in Forestry, Wildlife and Environment 2(2): 214-220. https://www.ajol.info/index.php/jrfwe/article/view/82380
Teoh, Y.P.; Don, M.M.; Ujang, S. 2011. Assessment of the properties, utilization, and preservation of rubberwood (Hevea brasiliensis): a case study in Malaysia. Journal of Wood Science 57(4): 255-266. https://doi.org/10.1007/s10086-011-1173-2 DOI: https://doi.org/10.1007/s10086-011-1173-2
UNEP. 2015. Demand for wood in Africa could triple by 2050, straining the continent's dwindling forest resources. UN Report 8/9/15. https://www.unep.org/news-and-stories/press-release/demand-wood-africa-could-triple-2050-straining-continents-dwindling
Vitalis, J.P.; Oruonye, E.D. 2021. The Nigerian population: A treasure for national development or an unsurmountable national challenge. International Journal of Science and Research Archive 2(1): 136-142. https://doi.org/10.30574/ijsra.2021.2.1.0026 DOI: https://doi.org/10.30574/ijsra.2021.2.1.0026
Wengert, E.M. 2006. Principles and practices of drying lumber. Lignomat USA ltd., Virginia, USA. https://www.routerforums.com/attachments/principles-and-practices-of-drying-lumber-pdf.14461/
Xiang, W.; Leitch, M.; Auty, D.; Duchateau, E.; Achim, A. 2014. Radial trends in black spruce wood density can show an age- and growth-related decline. Annals of Forest Science 71(5): 603-615. https://doi.org/10.1007/s13595-014-0363-7 DOI: https://doi.org/10.1007/s13595-014-0363-7
Xu, P.; Liu, H.; Evans, R.; Donaldson, L.A. 2009. Longitudinal shrinkage behavior of compression wood in radiata pine. Wood Science and Technology 43(5-6): 423-439. https://doi.org/10.1007/s00226-008-0228-z DOI: https://doi.org/10.1007/s00226-008-0228-z
Zaki, A.J.; Muhammed, S.; Shafie, A.; Wan Daud, W.S. 2012. Chemical properties of juvenile latex timber clone Rubberwood trees. The Malaysian Journal of Analytical Sciences 16(3): 228-234. http://mjas.analis.com.my/wp-content/uploads/2018/11/Junaiza.pdf
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.