Thermal modification of fast-growing Firmiana simplex wood using tin alloy: Evaluation of physical and mechanical properties
DOI:
https://doi.org/10.22320/s0718221x/2025.03Keywords:
Firmiana simplex, mechanical properties, swelling, tin alloy thermal modification, water absorptionAbstract
Wood is an important structural material, but some undesirable properties limit its application in construction. This study investigated the effect of tin alloy thermal modification (TTM) on selected physical and mechanical properties of Firmiana simplex (Chinese bottletree) wood. Tin alloy thermal modification of F. simplex was performed in a tin alloy bath at two different temperatures (150 oC and 210 oC for 2 h and 8 h). Physical properties such as swelling, water absorption and density and mechanical properties like modulus of elasticity, modulus of rupture, impact bending, compression strength and Brinell hardness of tin alloy thermal modified and control samples were evaluated. The results showed that tin alloy thermal modification decreased the swelling of the wood to 4,85 %, 1,45 % and 6,99 % along the tangential, radial and volumetric coefficient and water absorption and density decreased to 53,10 % and 290 kg/m3 respectively compared to the control. Modulus of elasticity, modulus of rupture, impact bending, compression strength and Brinell hardness of tin alloy thermal modified F. simplex at 210 °C for 8 h decreased to 6366,1 MPa, 54,9 MPa, 2,7 MPa, 29,4 MPa and 1113,5 MPa respectively compared to the control. In conclusion, the tin alloy thermal modified wood at 210 oC significantly affected the physical and mechanical properties of the wood.
Downloads
References
Alén, R.; Kotilainen, R.; Zaman, A. 2002. Thermochemical behaviour of Norway spruce (Picea abies) at 180-225 oC. Wood Science and Technology 36:163-171. https://doi.org/10.1007/s00226-001-0133-1 DOI: https://doi.org/10.1007/s00226-001-0133-1
ASTM. 2006. Standard test methods for evaluating properties of wood-based fibre and particle panel materials. Linear expansion with change in moisture content. ASTM D1037-06a. ASTM: West Conshohocken, PA, USA.
Ayrilmis, N.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P. 2011. Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polymer Degradation and Stability 96:818-822. https://doi.org/10.1016/j.polymdegradstab.2011.02.005 DOI: https://doi.org/10.1016/j.polymdegradstab.2011.02.005
Bächle, H.; Zimmer, B.; Windeisen, E.; Wegener, G. 2010. Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Science and Technology 44: 421-433. https://doi.org/10.1007/s00226-010-0361-3 DOI: https://doi.org/10.1007/s00226-010-0361-3
Bal, B.C.; Bektaş, İ. 2013. The effects of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis. Drying Technology 31(4):479-485. https://doi.org/10.1080/07373937.2012.742910 DOI: https://doi.org/10.1080/07373937.2012.742910
Boonstra, M.J.; Acker, J.V.; Tjeerdsma, B.F.; Kegel, E.V. 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64:679-690. https://doi.org/10.1051/forest:2007048 DOI: https://doi.org/10.1051/forest:2007048
Cai, C.; Haapala, A.; Rahman, M.H.; Tiitta, M.; Tiitta, V.; Tomppo, L.; Lappalainen, R.; Heräjärvi, H. 2020. Effects of two-year weather exposure on thermally modified Picea abies, Pinus sylvestris, and Fraxinus excelsior wood. Canadian Journal of Forest Research 50(11):1160-1171. http://dx.doi.org/10.1139/cjfr-2019-0446 DOI: https://doi.org/10.1139/cjfr-2019-0446
Corleto, R.; Gaff, M.; Niemz, P.; Sethy, A.K.; Todaro, L.; Ditommaso, G.; Razaei, F.; Sikora, A.; Kaplan, L.; Das, S.; Kamboj, G.; Gašparík, M.; Kačík, F.; Macků, J. 2020. Effect of thermal modification on properties and milling behaviour of African padauk (Pterocarpus soyauxii Taub.) wood. Journal of Materials Research and Technology 9(4):9315-9327. https://doi.org/10.1016/j.jmrt.2020.06.018 DOI: https://doi.org/10.1016/j.jmrt.2020.06.018
EN. 1993. Wood-based panels-determination of modulus of elasticity in bending and of bending strength. EN 310. EN: Brussels, Belgium.
EN. 2003. Wood and parquet flooring-determination of resistance to indentation (Brinell)-test method. CEN-European Committee for Standardization. EN 1534. EN: Brussels, Belgium.
Esteves, B. 2009. Wood modification by heat treatment: A review. BioResource 4(1): 370-404. https://bioresources.cnr.ncsu.edu/resources/wood-modification-by-heat-treatment-a-review/ DOI: https://doi.org/10.15376/biores.4.1.Esteves
Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. 2007. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 41:193-207. https://doi.org/10.1007/s00226-006-0099-0 DOI: https://doi.org/10.1007/s00226-006-0099-0
Gaff, M.; Kačík, F.; Sandberg, D.; Babiak, M.; Turčani, M.; Niemz, P.; Hanzlík, P. 2019. The effect of chemical changes during thermal modification of European oak and Norway spruce on elasticity properties. Composite Structures 220:529-538. https://doi.org/10.1016/j.compstruct.2019.04.034 DOI: https://doi.org/10.1016/j.compstruct.2019.04.034
González-Peña, M.M.; Curling, S.F.; Hale; M.D. 2009. On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degradation and Stability 94(12):2184-2193. https://doi.org/10.1016/j.polymdegradstab.2009.09.003 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.09.003
He, Z.; Qu, L.; Wang, Z.; Qian, J.; Yi, S. 2019. Effects of zinc chloride-silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism. Scientific Reports 9(1): e1601. https://doi.org/10.1038/s41598-018-38317-5 DOI: https://doi.org/10.1038/s41598-018-38317-5
He, Z.; Qu, L.; Wang, Z.; Qian, J.; Yi, S. 2020. Evaluation of the hygroscopicity and dimensional stability of silicone oil-treated wood. Holzforschung 74(8):811-815. https://doi.org/10.1515/hf-2019-0075 DOI: https://doi.org/10.1515/hf-2019-0075
Hill, C.A. 2007. Wood modification: chemical, thermal and other processes. John Wiley and Sons: Toronto, Canada. ISBN: 978-0-470-02172-9. https://www.wiley.com/en-us/Wood+Modification%3A+Chemical%2C+Thermal+and+Other+Processes-p-9780470021729
ISO. 2010. Plastics -determination of Charpy impact properties. Part 1: non-instrumented impact test. CEN-European Committee for Standardization. EN ISO 179-1. EN ISO: Brussels, Belgium.
ISO. 2017. Physical and mechanical properties of wood - test methods for small clear wood specimens - Part 17: Determination of ultimate stress in compression parallel to the grain. ISO 13061-17. ISO. Geneva, Switzerland.
Junkkonen, R.; Heräjärvi, H. 2006. Physical properties of European and hybrid aspen wood after three different drying treatments. In Proceedings of the 5th International Symposium of Wood Structure and Properties. Zvolen, Slovakia. 257-263.
Kačíková, D.; Kačík, F.; Čabalová, I.; Ďurkovič, J. 2013. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresource Technology 144:669-674. https://doi.org/10.1016/j.biortech.2013.06.110 DOI: https://doi.org/10.1016/j.biortech.2013.06.110
Korošec, R.C.; Lavrič, B.; Rep, G.; Pohleven, F.; Bukovec, P. 2009. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. Journal of Thermal Analysis and Calorimetry 98:189-195. https://doi.org/10.1007/s10973-009-0374-z DOI: https://doi.org/10.1007/s10973-009-0374-z
Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. 2018. Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials 181:408-419. https://doi.org/10.1016/j.conbuildmat.2018.06.058 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.058
Mahmoud Kia, M.; Tarmian, A.; Karimi, A.N.; Gholamiyan, H.; Abdulkhani, A.; Mastri Farahani, M.R. 2020. The efficiency of Pistacia atlantica gum for increasing resistance of rapeseed oil-heat treated wood to fungal attacks. Maderas. Ciencia y Tecnología 22(4):457-66. http://dx.doi.org/10.4067/S0718-221X2020005000404 DOI: https://doi.org/10.4067/S0718-221X2020005000404
Militz, H.; Altgen, M. 2014. Chapter 16. Processes and properties of thermally modified wood manufactured in Europe. In: Deterioration and protection of sustainable biomaterials. Schultz, T. P.; Goodell, B.; Nicholas, D. D. (Eds.). ACS Publications. June 2014, pp. 269-285. https://pubs.acs.org/doi/abs/10.1021/bk-2014-1158.ch016 DOI: https://doi.org/10.1021/bk-2014-1158.ch016
Okon, K.E.; Lin, F.; Chen, Y.; Huang, B. 2018a. Decay resistance and dimensional stability improvement of wood by low melting point alloy heat treatment. Journal of Forestry Research 29(6):1797-1805. https://doi.org/10.1007/s11676-017-0537-x DOI: https://doi.org/10.1007/s11676-017-0537-x
Okon, K.E.; Lin, F.; Chen, Y.; Huang, B. 2018b. Tin-based metal bath heat treatment: an efficient and recyclable green approach for Pinus massoniana wood modification. Journal of Forestry Research 29(6):1807-1814. https://doi.org/10.1007/s11676-017-0573-6 DOI: https://doi.org/10.1007/s11676-017-0573-6
R Core Team, R. 2013. R: A language and environment for statistical computing. R Core Team, R. 2013. R: A language and environment.
Rautkari, L.; Laine, K.; Kutnar, A.; Medved, S.; Hughes, M. 2013. Hardness and density profile of surface densified and thermally modified Scots pine in relation to the degree of densification. Journal of Materials Science 48: 2370-2375. https://doi.org/10.1007/s10853-012-7019-5 DOI: https://doi.org/10.1007/s10853-012-7019-5
Rautkari, L.; Honkanen, J.; Hill, C.A.; Ridley-Ellis, D.; Hughes, M. 2014. Mechanical and physical properties of thermally modified Scots pine wood in high-pressure reactor under saturated steam at 120, 150 and 180 oC. European Journal of Wood and Wood Products 72(1):33-41. https://doi.org/10.1007/s00107-013-0749-5 DOI: https://doi.org/10.1007/s00107-013-0749-5
Santos, J. 2000. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology 34(1):39-43. https://doi.org/10.1007/s002260050006 DOI: https://doi.org/10.1007/s002260050006
Srinivas, K.; Pandey, K.K. 2012. Effect of heat treatment on colour changes, dimensional stability, and mechanical properties of wood. Journal of Wood Chemistry and Technology 32: 304-316. https://doi.org/10.1080/02773813.2012.674170 DOI: https://doi.org/10.1080/02773813.2012.674170
Tang, T.; Zhang, B.; Liu, X.; Wang, W.; Chen, X.; Fei, B. 2019. Synergistic effects of tung oil and heat treatment on physicochemical properties of bamboo materials. Scientific Reports 9(1):12824. https://doi.org/10.1038/s41598-019-49240-8 DOI: https://doi.org/10.1038/s41598-019-49240-8
Tjeerdsma, B.F, Militz H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff 63:102-111. https://doi.org/10.1007/s00107-004-0532-8 DOI: https://doi.org/10.1007/s00107-004-0532-8
Wang, X.; Liu, J.; Chai, Y. 2012. Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. BioResources 7(1):0893-0901. https://doi.org/10.15376/biores.7.1.893-901 DOI: https://doi.org/10.15376/biores.7.1.893-901
Yildiz, S.; Gezer, E.D.; Yildiz, U.C. 2006. Mechanical and chemical behaviour of spruce wood modified by heat. Building and Environment 41(12):1762-1766. https://doi.org/10.1016/j.buildenv.2005.07.017 DOI: https://doi.org/10.1016/j.buildenv.2005.07.017
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.