Effect of the heat treatment on the physicochemical characteristics of rubberwood: Results of thermal analysis and FTIR spectroscopy

Authors

  • Olga Shapchenkova V.N. Sukachev Institute of Forest Siberian Branch Russian Academy of Science. Federal Research Center. Krasnoyarsk https://orcid.org/0000-0002-1392-5171
  • Sergei Loskutov V.N. Sukachev Institute of Forest Siberian Branch Russian Academy of Science. Federal Research Center. Krasnoyarsk, Russia. https://orcid.org/0000-0002-3779-8752
  • Antonina Aniskina V.N. Sukachev Institute of Forest Siberian Branch Russian Academy of Science. Federal Research Center. Krasnoyarsk, Russia. https://orcid.org/0000-0002-2696-0267
  • Suthon Srivaro Walailak University. Center of Excellence in Wood and Biomaterials. Nakhon Si Thammarat, Thailand. https://orcid.org/0000-0001-8851-5858
  • Zoltán Börcsök University of Sopron. Faculty of Wood Engineering and Creative Industries. Sopron, Hungary https://orcid.org/0000-0002-7492-9889
  • Zoltán Pásztory University of Sopron. Faculty of Wood Engineering and Creative Industries. Sopron, Hungary https://orcid.org/0000-0001-9326-0650

DOI:

https://doi.org/10.22320/s0718221x/2025.05

Keywords:

FTIR spectroscopy, heat treatment, Hevea brasiliensis, rubberwood, thermal analysis

Abstract

Heat treatment is an environmentally friendly method used to improve properties of rubberwood. In this work, the changes in the chemical composition, thermal behavior and thermal degradation kinetics of heat-treated Hevea brasiliensis (rubber tree) were evaluated using thermogravimetry, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The rubberwood samples were exposed to temperatures of 180 °C and 220 °C in air under atmospheric pressure for durations of 15 25 and 35 h. Thermal analysis  revealed degradation of hemicelluloses, an increase in the relative proportions of cellulose and lignin in heat-treated rubberwood. The thermal decomposition of rubberwood heat-treated at 220 °C started at a higher temperature compared to untreated wood. A shift in the position of peaks on differential thermogravimetry and differential scanning calorimetry curves of heat-treated samples was observed, indicating changes in the structure of wood polymers. The temperature of heat treatment had a stronger effect on the chemical composition of rubberwood than duration. Significant changes in the chemical composition of rubberwood occurred after the treatment duration of 15 h at both 180 °C and 220 °C. The duration of 25 h and 35 h had no further substantial effect. The isoconversional method of Flynn-Wall-Ozawa was used to determine the kinetics of thermal degradation of untreated and heat-treated rubberwood. It is found that the average values of activation energy in the conversion degree range of 0,05 - 0,65 (the thermal degradation of polysaccharides) increased with increasing treatment temperature and duration. Fourier transform infrared spectra demonstrated alterations in wood polymers.

Downloads

Download data is not yet available.

Author Biographies

Olga Shapchenkova, V.N. Sukachev Institute of Forest Siberian Branch Russian Academy of Science. Federal Research Center. Krasnoyarsk

Biography

Sergei Loskutov, V.N. Sukachev Institute of Forest Siberian Branch Russian Academy of Science. Federal Research Center. Krasnoyarsk, Russia.

Biography

Antonina Aniskina, V.N. Sukachev Institute of Forest Siberian Branch Russian Academy of Science. Federal Research Center. Krasnoyarsk, Russia.

Biography

Suthon Srivaro, Walailak University. Center of Excellence in Wood and Biomaterials. Nakhon Si Thammarat, Thailand.

Biography

Zoltán Börcsök, University of Sopron. Faculty of Wood Engineering and Creative Industries. Sopron, Hungary

Biography

Zoltán Pásztory, University of Sopron. Faculty of Wood Engineering and Creative Industries. Sopron, Hungary

Biography

References

Ates, S.; Akyildiz, M.H.; Ozdemir, H. 2009. Effects of heat treatment on calabrian pine (Pinus brutia

Ten.) wood. BioResources 4(3): 1032-1043. http://dx.doi.org/10.15376/biores.4.3.1032-1043

Baroni, É.G.; Tannous, K.; Rueda-Ordόñez, Y.J.; Tinoco-Navarro, L.K. 2016. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis. Journal of Thermal Analysis and Calorimetry 123: 909-917. http://dx.doi.org/10.1007/s10973-015-4707-9

Brebu, M.; Vasile, C. 2010. Thermal degradation of lignin - a review. Cellulose Chemistry and Technology 44(9): 353-363. https://www.cellulosechemtechnol.ro/pdf/CCT9(2010)/P.353-363.pdf

Brito, J.O.; Silva, F.G.; Leão, M.M.; Almeida, G. 2008. Chemical composition changes in Eucalyptus and Pinus submitted to heat treatment. Bioresource Technology 99(18): 8545-8548. https://doi.org/10.1016/j.biortech.2008.03.069

Chanpet, M.; Rakmak, N.; Matan, N.; Siripatana, C. 2020. Effect of air velocity, temperature, and relative humidity on drying kinetics of rubberwood. Heliyon 6(10). e05151. https://doi.org/10.1016/j.heliyon.2020.e05151

Cui, X.; Matsumura, J. 2019. Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering. Forests 10(9). e791. https://doi.org/10.3390/f10090791

Devi, R.R.; Maji, T.K.; Banerjee, A.N. 2004. Studies on dimensional stability and thermal properties of rubber wood chemically modified with styrene and glycidyl methacrylate. Journal of Applied Polymer Science 93: 1938-1945. https://doi.org/10.1002/app.20657

EN. 1097-3:1999. (1999). Tests for mechanical and physical properties of aggregates - determination of loose bulk density and voids, https://www.en-standard.eu/une-en-1097-3-1999-tests-for-mechanical-and-physical-properties-of-aggregates-part-3-determination-of-loose-bulk-density-and-voids/?srsltid=AfmBO- op7unz5ou_c1hhwSj3TWoxRL4ehIVYZGDsU8v1x7gls2LPTw3uI

Esteves, B.; Pereira, H. 2008. Wood modification by heat treatment: a review. BioResources 4: 370-404. http://dx.doi.org/10.15376/biores.4.1.370-404

Esteves, B.; Velez, Marques, A.; Domingos, I.; Pereira, H. 2013. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y Tecnología 15(2): 245-258. http://dx.doi.org/10.4067/S0718-221X2013005000020

Eufrade Junior, H.J.; Ohto, J.M.; da Silva, L.L.; Palma, H.A.L.; Ballarin, A.W. 2015. Potential of rubberwood (Hevea brasiliensis) for structural use after the period of latex extraction: a case study in Brazil. Journal of Wood Science 61: 384-390. https://doi.org/10.1007/s10086-015-1478-7

Gao, M.; Sun, C.Y.; Wang, C.X. 2006. Thermal degradation of wood treated with flame retardants. Jour- nal of Thermal Analysis and Calorimetry 85(3): 765-769. https://doi.org/10.1007/s10973-005-7225-3

González-Peña, M.M.; Curling, S.F.; Hale, M.D.C. 2009. On the effect of heat on the chemical com- position and dimensions of thermally-modified wood. Polymer Degradation and Stability 94(12): 2184-2193. https://doi.org/10.1016/j.polymdegradstab.2009.09.003

Hill, C.; Altgen, M.; Rautkari, L. 2021. Thermal modification of wood-a review: chemical changes and hygroscopicity. Journal of Materials Science 56: 6581-6614. https://doi.org/10.1007/s10853-020-05722-z

Kačík; F.; Luptáková, J.; Šmíra, P.; Eštoková, A.; Kačíková, D.; Nasswettrová, A.; Bubeníková, T. 2017. Thermal analysis of heat-treated silver fir wood and larval frass. Journal of Thermal Analysis and Calorimetry 130: 755-762. http://doi.org/10.1007/s10973-017-6463-5

Killmann, W.; Hong, L.T. 2000. Rubberwood - the success of an agricultural by-product. Unasylva 51: 66-72. https://www.researchgate.net/publication/283167477_Rubberwood_-_The_success_of_an_agricultural_

by-product

Korošec, R.C.; Lavrič, B.; Rep, G.; Pohleven, F.; Bukovec, P. 2009. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. Journal of Thermal Analysis and Calorimetry 98: 189-95. http://dx.doi.org/10.1007/s10973-009-0374-z

Korošec, R.C.; Renko, S.; Rep, G.; Bukovec, P. 2017. Determination of the thermal modification degree of beech wood using thermogravimetry. Journal of Thermal Analysis and Calorimetry 130: 1383-1390. http://dx.doi.org/10.1007/s10973-017-6446-6

Kotilainen, R.; Toivannen, T.;Alén R. 2000. FTIR monitoring of chemical changes in softwood during heating. Journal of Wood Chemistry and Technology 20(3): 307-320. https://doi.org/10.1080/02773810009349638

Kubovský, I.; Kačíková, D.; Kačík, F. 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12(2): e485. https://doi.org/10.3390/polym12020485

Li, X.; Li, T.; Li, G.; Li, M.; Lu, Q.; Qin, S.; Li, J. 2020a. Effects of UV light irradiation on color changes in thermally modified rubber wood based on FTIR. BioResources 15(3): 5179-5197. http://dx.doi.org/10.15376/biores.15.3.5179-5197

Li, T.; Li, G.; Li, J.; Li, X.; Lu, Q.; Li, M. 2020b. Characterization of the effluents condensated by volatile organic compounds during heat-treated rubberwood process. Journal of Wood Science 66(1). e50. http://dx.doi.org/10.1186/s10086-020-01897-w

Lin, B.J.; Colin, B.; Chen, W.H.; Pétrissans, A.; Rousset, P.; Pétrissans, M. 2018. Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum. Journal of Analytical and Applied Pyrolysis 130: 8-18. https://doi.org/10.1016/j.jaap.2018.02.005

Lopes, J. de O.; Garcia, R.A.; Souza, N.D. 2018. Infrared spectroscopy of the surface of thermally-mod- ified teak juvenile wood. Maderas. Ciencia y Tecnología 20(4): 737-746. http://dx.doi.org/10.4067/S0718-221X2018005041901

López-González, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanchez-Silva, L. 2013. Thermogravi-metric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresource Technology 143: 562-574. https://doi.org/10.1016/j.biortech.2013.06.052

Mamleev, V.; Dourbigot, S., Le Bras, M.; Lefebvre, J. 2004. Three model-free methods for cal- culation of activation energy in TG. Journal of Thermal Analysis and Calorimetry 78(3). e1009. http://dx.doi.org/10.1007/s10973-005-0467-0

Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. 2017. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 17. e395. http://doi.org/10.1016/j.saa.2016.08.026

Pandey, K.K.; Nagveni, H.C. 2007. Rapid characterisation of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz als Roh- und Werkstoff 65: 477-481. https://doi.org/10.1007/s00107-007-0181-9

Pásztory, Z.; Horváth, N.; Börcsök, Z. 2017. Effect of heat treatment duration on the thermal con- ductivity of spruce and poplar wood. European Journal of Wood and Wood Products 75: 843-845. https://doi.org/10.1007/s00107-017-1170-2

Poletto, M.; Zattera, A.J.; Santana, R.M.C. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126: 7-12. http://dx.doi.org/10.1016/j.biortech.2012.08.133

Pozo, C.; Díaz-Visurraga, J.; Contreras, D.; Freer, J.; Rodríguez, J. 2016. Characterization of temporal biodegradation of radiata pine by Gloeophyllum trabeum through principal component analysis-based two-dimensional correlation. Journal of the Chilean Chemical Society 61(2): 2878-2883. http://dx.doi.org/10.4067/S0717-97072016000200006

Ratnasingam, J.; Ioras, F. 2012. Effect of heat treatment on the machining and other properties of rubberwood. European Journal of Wood and Wood Products 70: 759-761. https://doi.org/10.1007/s00107-011-0587-2

Ratnasingam, J.; Ioras, F. 2013. Load-bearing characteristics of heat-treated rubberwood furniture com- ponents and joints. European Journal of Wood and Wood Products 71: 287-289. http://dx.doi.org/10.1007/s00107-013-0662-y

Severo, E.T.D.; Calonego, F.W.; Sansígolo, C.A.; Bond, B. 2016. Changes in the chemical compo- sition and decay resistance of thermally-modified Hevea brasiliensis wood. PLoS ONE 11(3). e0151353 https://doi.org/10.1371/journal.pone.0151353

Shen, D.K.; Gua, S.; Luo, K.H.; Bridgwater, A.V.; Fang, M.X. 2009. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88(6): 1024-1030. http://dx.doi.org/10.1016/j.fuel.2008.10.034

Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. 2018. Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of Wood Science 64: 406-416. https://doi.org/10.1007/s10086-018-1721-0

Simatupang, M.H.; Schmitt, U.; Kasim A. 1994. Wood extractives of rubberwood (Hevea brasiliensis) and their influences on the setting of the inorganic binder in gypsum-bonded particleboards. Journal of Tropical Forest Science 6(3): 269-285. https://www.jstor.org/stable/43582437

Srinivas, K.; Pandey, K.K. 2012. Photodegradation of thermally modified wood. Journal of Photochemistry and Photobiology B: Biology 117: 140-145. https://doi.org/10.1016/j.jphotobiol.2012.09.013

Umar, I.; Zaidon, A.; Lee, S.H.; Halis, R. 2016. Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance. Journal of Tropical Forest Science 28(1): 88-96. https://www.jstor.org/stable/43748082

Zaki, J.A.; Muhammed, S.; Shafie, A.; Daud, W.R.W. 2012. Chemical properties of juvenile latex tim- ber clone rubberwood trees. Malaysian J Anal Sci 16(3):228-234. http://mjas.analis.com.my/wp-content/up-loads/2018/11/Junaiza.pdf

Zhang, N.; Xu, M.; Cai, L. 2019. Improvement of mechanical, humidity resistance and thermal prop- erties of heat-treated rubber wood by impregnation of SiO2 precursor. Scientific Reports 9. e982. https://doi.org/10.1038/s41598-018-37363-3

Zhao, B.; Yu, Z.; Zhang, Y.; Qi, C. 2019. Physical and mechanical properties of rubberwood (Hevea brasiliensis) dyed with Lasiodiplodia theobromae. Journal of Wood Science 65(1). e63. https://doi.org/10.1186/s10086-019-1843-z

Downloads

Published

2024-11-08

How to Cite

Shapchenkova, O., Loskutov, S., Aniskina, A., Srivaro, S. ., Börcsök, Z. ., & Pásztory, Z. . (2024). Effect of the heat treatment on the physicochemical characteristics of rubberwood: Results of thermal analysis and FTIR spectroscopy. Maderas. Ciencia Y Tecnología, 27, 1–13. https://doi.org/10.22320/s0718221x/2025.05

Issue

Section

Article