Antifungal and antitermitic potential of extracts of industrial wood waste from Central Amazon, Brazil
DOI:
https://doi.org/10.22320/s0718221x/2025.08Keywords:
Amazonian wood species, antifungal activity, extractives, natural durability, termite resistance, wood wasteAbstract
Studies on wood durability have highlighted the use of new environmentally friendly substances. In this sense, research carried out with Amazonian forest species is extremely important for the discovery of new bioactive substances from durable wood and its residues. The aim of this study was to evaluate the antitermitic and antifungal potential of extracts obtained from industrial processing residues of wood species from Central Amazonia, Brazil. The sawdust of seven Amazonian wood species were collected to obtain extracts and quantify the extractive content. The extracts produced were tested for inhibition of fungal growth of Rhodonia placenta and Trametes versicolor and impregnated in low natural durability wood known as Simarouba amara (marupa) to verify the effect on wood natural durability against Nasutitermes sp. termites and Gloeophyllum trabeum fungus. Simarouba amara (marupa) wood was easily impregnated and showed satisfactory retention values. The species Buchenavia sp., Dinizia excelsa (red angelim), Hymenolobium flavum (angelim pedra) and Manilkara elata (maçaranduba) exhibited high contents of secondary metabolites. It was observed that the extracts of Roupala montana (louro faia) and Hymenolobium flavum (angelim pedra) exhibited the best performance in inhibiting fungal growth. In the accelerated decay test, marupa wood impregnated with Buchenavia sp. (tanimbuca) extract showed the lowest weight loss after exposure to the fungus Gloeophyllum trabeum. In the termite choice feeding test, wood impregnated with Dinizia excelsa (red angelim) and Buchenavia sp. (tanimbuca) extracts were most consumed and the extracts of Roupala montana (louro faia), Cordia sp., Hymenolobium flavum (angelim pedra) and Manilkara elata (maçaranduba) provided greater inhibition of termite attack. The combination of extracts must be tested in future studies to verify the synergistic effect, in addition to the chemical analyses of the selected extracts.
Downloads
References
ASTM. 2005. Standard test method for preparation of extractive-free wood. ASTM D1105-96. ASTM. Philadelphia, PA, USA.
ASTM. 2005. Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM D1107-96. ASTM. Philadelphia, PA, USA.
ASTM 2007. Standard Test Methods for Water Solubility of Wood. ASTM D1110-84. ASTM. Philadelphia, PA, USA.
AWPA. 2016. Laboratory methods for evaluating the termite resistance of wood-based materials: choice and no-choice tests. AWPA E1-16. AWPA. Birmingham, AL, USA.
AWPA. 2016. Laboratory method for evaluating the decay resistance of wood-based materials against pure basidiomycete cultures: soil/block test. AWPA E10-16. AWPA. Birmingham, AL, USA.
Alade, A.A.; Naghizadeh, Z.; Wessels, C.B.; Tyhoda, L. 2022. A review of the effects of wood preservative impregnation on adhesive bonding and joint performance. Journal of Adhesion Science and Technology 36(15): 1593-1617. https://doi.org/10.1080/01694243.2021.1981651 DOI: https://doi.org/10.1080/01694243.2021.1981651
Arantes, M.D.C.; Trugilho, P.F.; Lima, J.T.; Carneiro, A.C.O.; Alves, E.; Guerreiro, M.C. 2011. Longitudinal and radial variation of extractives and total lignin contents in a clone of Eucalyptus grandis W.Hill ex Maiden x Eucalyptus urophylla S. T. Blake. Cerne 17(3): 283-291. https://doi.org/10.1590/S0104-77602011000300001 DOI: https://doi.org/10.1590/S0104-77602011000300001
Araújo, A.J.C.; Ferreira, V.R.S.; Moutinho, V.H.P. 2014. Determinação do teor de extrativos presentes em resíduos madeireiros de muiracatiara (Astronium lecontei Ducke) e maçaranduba (Manilkara huberi Ducke) com diferentes métodos de extração. In: Proceedings of the II Seminário de Pesquisa Científica da Floresta Nacional do Tapajós. 2: 133-137. Santarém, PA, Brasil. https://ava.icmbio.gov.br/mod/data/view.php?d=17&mode=single&page=914
Barbero-López, A.; Akkanen, J.; Lappalainen, R.; Peräniemi, S.; Haapala, A. 2021. Bio-based wood preservatives: Their efficiency, leaching and ecotoxicity compared to a commercial wood preservative. Science of The Total Environment 753: e142013. https://doi.org/10.1016/j.scitotenv.2020.142013 DOI: https://doi.org/10.1016/j.scitotenv.2020.142013
Barbosa, A.P.; Nascimento, C.S.; Morais, J.W. 2007. Estudos de propriedades antitermíticas de extratos brutos de madeira e casca de espécies florestais da Amazônia Central, Brasil. Acta Amazonica 37(2): 213-218. https://doi.org/10.1590/S0044-59672007000200006 DOI: https://doi.org/10.1590/S0044-59672007000200006
Bi, Z.; Morrell, J.J.; Lei, Y.; Yan, L.; Ji, M. 2022. Eco-friendly and mildly modification of wood cell walls with heat treated wood extracts to improve wood decay resistance. Industrial Crops and Products 184: e115079. https://doi.org/10.1016/j.indcrop.2022.115079 DOI: https://doi.org/10.1016/j.indcrop.2022.115079
Brischke, C.; Alfredsen, Gry. 2022. Biological durability of pine wood. Wood Material Science & Engineering 18(3): 1050-1064. https://doi.org/10.1080/17480272.2022.2104134 DOI: https://doi.org/10.1080/17480272.2022.2104134
Brocco, V.F.; Paes, J.B.; Costa, L.G.; Brazolin, S.; Arantes, M.D.C. 2017. Potential of teak heartwood extracts as a natural wood preservative. Journal of Cleaner Production 142(4): 2093-2099. https://doi.org/10.1016/j.jclepro.2016.11.074 DOI: https://doi.org/10.1016/j.jclepro.2016.11.074
Brocco, V.F. 2019. Extratos de resíduos industriais da madeira de teca para proteção da madeira a organismos xilófagos. Ph.D. Thesis, Universidade Federal do Espírito Santo. Jerônimo Monteiro, ES, Brazil. https://sappg.ufes.br/tese_drupal//tese_13593_Tese%20VICTOR%20BROCCO%202019.pdf
Brocco, V.F.; Paes, J.B.; da Costa, L.G.; Kirker, G.T.; Brazolin, S. 2020. Wood color changes and termiticidal properties of teak heartwood extract used as a wood preservative. Holzforschung 74(3): 233-245. https://doi.org/10.1515/hf-2019-0138 DOI: https://doi.org/10.1515/hf-2019-0138
Broda, M. 2020. Natural Compounds for Wood Protection against Fungi - A Review. Molecules 25(15). e3538. https://doi.org/10.3390/molecules25153538 DOI: https://doi.org/10.3390/molecules25153538
Caires, M.D.S.D.L.; Filgueiras, G.C.; Mota Júnior, K.J.A.D.; Carvalho, A.C. 2019. A oferta de madeira em tora no Brasil e na Amazônia, período de 2000 a 2017. Revista de Administração e Negócios da Amazônia 11(3): 121-137. https://doi.org/10.18361/2176-8366/rara.v11n3p121-137 DOI: https://doi.org/10.18361/2176-8366/rara.v11n3p121-137
Carneiro, J.S.; Emmert, L.; Sternadt, G.H.; Mendes J.C.; Almeida, G.F. 2009. Decay susceptibility of Amazon wood species from Brazil against white rot and brown rot decay fungi. Holzforschung. 63(6): 767-772. https://doi.org/10.1515/HF.2009.119 DOI: https://doi.org/10.1515/HF.2009.119
Costa, F.N.; Cardoso, R.P.; Mendes, C.S.; Rodrigues, P.R.G.; Reis, A.R.S. 2019. Natural Resistance of Seven Amazon Woods to Xylophagous Termite Nasutitermes octopilis (Banks). Floresta e Ambiente 26(3): e20170145. https://doi.org/10.1590/2179-8087.014517 DOI: https://doi.org/10.1590/2179-8087.014517
Feraydoni, V.; Hosseinihashemi, S.K. 2012. Effect of walnut heartwood extractives, acid copper chromate, and boric acid on white-rot decay resistance of treated beech sapwood. BioResources 7(2): 2393-2402. https://doi.org/10.15376/biores.7.2.2393-2402 DOI: https://doi.org/10.15376/biores.7.2.2393-2402
Gouveia, F.N.; Silveira, M.F.; Garlet, A. 2021. Natural durability and improved resistance of 20 Amazonian wood species after 30 years in ground contact. Holzforschung 75(10): 892–899. https://doi.org/10.1515/hf-2020-0192 DOI: https://doi.org/10.1515/hf-2020-0192
Hassan, B.; Ahmed, S.; Kirker, G.; Mankowski, M.E.; Misbah ul Haq, M.; 2020. Synergistic effect of heartwood extracts in combination with linseed oil as wood preservatives against subterranean termite Heterotermes indicola (Blattodea: Rhinotermitidae). Environmental Science and Pollution Research 27: 3076-3085. https://doi.org/10.1007/s11356-019-07202-7 DOI: https://doi.org/10.1007/s11356-019-07202-7
IBGE. 2020. Produção da Extração Vegetal e da Silvicultura. IBGE: Rio de Janeiro, Brasil. https://biblioteca.ibge.gov.br/visualizacao/periodicos/74/pevs_2020_v35_notas_tecnicas.pdf
Imai, T.; Inoue, S.; Ohdaira, N.; Matsushita, Y.; Suzuki, R.; Sakurai, M.; Jesus, J.M.H.; Ozaki, S.K.; Finger, Z.; Fukushima, K. 2008. Heartwood extractives from the Amazonian trees Dipteryx odorata, Hymenaea courbaril, and Astronium lecointei and their antioxidant activities. Journal of Wood Science 54: 470-475. https://doi.org/10.1007/s10086-008-0975-3 DOI: https://doi.org/10.1007/s10086-008-0975-3
Jesus, M.A.; Morais, J.W.; Abreu, R.L.S; Cardias, M.D.F.C. 1998. Durabilidade natural de 46 espécies de madeira amazônica em contato com o solo em ambiente florestal. Scientia Forestalis 27(54): 81-92. https://www.ipef.br/publicacoes/scientia/nr54/cap07.pdf
Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. 2013. The role of extractives in naturally durable wood species. International Biodeterioration & Biodegradation 82: 53-58. https://doi.org/10.1016/j.ibiod.2013.03.007 DOI: https://doi.org/10.1016/j.ibiod.2013.03.007
Kölle, M.; Crivelente Horta, M.A.; Benz, J.P.; Pilgård, A. 2021. Comparative Transcriptomics During Brown Rot Decay in Three Fungi Reveals Strain-Specific Degradative Strategies and Responses to Wood Acetylation. Frontiers in Fungal Biology 2: e701579. https://doi.org/10.3389/ffunb.2021.701579 DOI: https://doi.org/10.3389/ffunb.2021.701579
Leonardi, B.; de Arauz, L.J.; Baruque-Ramos, J. 2019. Chemical characterization of Amazonian non-polar vegetal extracts (buriti, tucumã, Brazil nut, cupuaçu, and cocoa) by infrared spectroscopy (FTIR) and gas chromatography (GC-FID). Infarma 31(3):163-176. https://www.cabidigitallibrary.org/doi/full/10.5555/20203372003 DOI: https://doi.org/10.14450/2318-9312.v31.e3.a2019.pp163-176
Lima, M.D.R.; Patrício, E.P.S.; Barros Junior, U.O.; Silva, R.C.C.; Bufalino, L.; Numazawa, S.; Hein, P.R.G.; Protásio, T.P. 2021. Colorimetry as a criterion for segregation of logging wastes from sustainable forest management in the Brazilian Amazon for bioenergy. Renewable Energy 163: 792-806. https://doi.org/10.1016/j.renene.2020.08.078 DOI: https://doi.org/10.1016/j.renene.2020.08.078
Lobão, M.S.; Castro, V.R.; Rangel, A.; Sarto, C.; Tomazello Filho, M.; Silva, F.G.; Camargo Neto, L.; Bermudez, M.A.R.C. 2011. Agrupamento de espécies florestais por análises univariadas e multivariadas das características anatômica, física e química das suas madeiras. Scientia Forestalis 39(92): 469-477. https://www.ipef.br/publicacoes/scientia/nr92/cap10.pdf
Lukmandaru, G.; Takahashi, K. 2009. Radial distribution of quinones in plantation teak (Tectona grandis L.f.). Annals of Forest Science 66: 605-605. https://doi.org/10.1051/forest/2009051 DOI: https://doi.org/10.1051/forest/2009051
Martín, J.A.; López, R. 2023. Biological Deterioration and Natural Durability of Wood in Europe. Forests 14(2): e283. https://doi.org/10.3390/f14020283 DOI: https://doi.org/10.3390/f14020283
Morrell, J.J. 2018. Protection of Wood-Based Materials. In: Handbook of Environmental Degradation of Materials. Kutz, M. (Ed.). William Andrew Publishing. ISBN 978-0-323-52472-8. https://doi.org/10.1016/B978-0-323-52472-8.00017-4 DOI: https://doi.org/10.1016/B978-0-323-52472-8.00017-4
Niamké, F.B.; Amusant, N.; Augustin, A.A.; Chaix, G. 2021. Teakwood Chemistry and Natural Durability. In: The Teak Genome: Compendium of Plant Genomes. Ramasamy, Y.; Galeano, E.; Win, T.T (eds). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-79311-1_7 DOI: https://doi.org/10.1007/978-3-030-79311-1_7
Nobre Lamarão, M.L.; Ferreira, L.M.D.M.C.; Gyles Lynch, D.; Morais, L.R.B.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. 2023. Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of this Amazonian Plant. Plants 12(6): e1330. https://doi.org/10.3390/plants12061330 DOI: https://doi.org/10.3390/plants12061330
Paes, J.B.; Melo, R.R. de; Lima, C.R. de; Oliveira, E. de. 2007. Resistência natural de sete madeiras ao cupim subterrâneo (Nasutitermes corniger Motsch.) em ensaio de preferência alimentar. Revista Brasileira de Ciências Agrárias 2(1): 57-62. https://doi.org/10.5039/agraria.v2i1a1885 DOI: https://doi.org/10.5039/agraria.v2i1a1885
Paes, J.B.; Segundinho, P.G. de A.; Euflosino, A.E.R.; Silva, M.R. da; Calil Junior, C.; Oliveira, J.G.L. 2015. Resistance of thermally treated woods to Nasutitermes corniger in a food preference test. Madera y Bosques 21(1): 157-164. https://doi.org/10.21829/myb.2015.211439 DOI: https://doi.org/10.21829/myb.2015.211439
Pêgas, M.R.A. 2007. Resistência natural de nove espécies de madeiras ao ataque de Coptotermes gestroi (Wasmann, 1896) (Isoptera: Rhinotermitidae). B.Sc. Monograph. Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil. http://www.if.ufrrj.br/inst/monografia/2007I/Monografia_Mario_Ricardo_Alves_Pegas.pdf
Pinheiro, R.S.; Ramos, V.M.; Leão, R.M.; Almeida, V.T.; Cruz, J.V.S.; Saqueti, M.B.; Prado, M.V.; Milhorança, G.R. 2017. Forrageamento e sobrevivência de colônias do cupim Nasutitermes sp em laboratório. Colloquium Agrariae 13(2): 123-129. https://revistas.unoeste.br/index.php/ca/article/view/1988 DOI: https://doi.org/10.5747/ca.2017.v13.n2.a167
Pinto, A.A. de S. 2020. Eficiência de extrativos da folha de Tectona grandis L.f na inibição de fungos apodrecedores de madeira. M.Sc. Thesis, Universidade de Brasília, Brasília, Brazil. http://icts.unb.br/jspui/bitstream/10482/39884/1/2020_AdriannaAmorimdeSousaPinto.pdf
Reis, A.R.S.; Reis, L.P.; Alves-Júnior, M.; de Carvalho, J.C.; da Silva, J.R. 2017. Amazon woods submitted to xylophagous fungal infection under laboratory conditions. Madera y Bosques 23(2): 155-162. https://doi.org/10.21829/myb.2017.232968 DOI: https://doi.org/10.21829/myb.2017.232968
Rodrigues, A.M.S.; Stien, D.; Eparvier, V.; Espindola, L.S.; Beauchêne, J.; Amusant, N.; Leménager, N.; Baudassé, C.; Raguin, L. 2012. The wood preservative potential of long-lasting Amazonian wood extracts. International Biodeterioration & Biodegradation 75: 146-149. https://doi.org/10.1016/j.ibiod.2012.03.014 DOI: https://doi.org/10.1016/j.ibiod.2012.03.014
Romero, F.M.B.; Jacovine, L.A.G.; Ribeiro, S.C.; Ferreira Neto, J.A.; Ferrante, L.; da Rocha, S.J.S.S.; Torres, C.M.M.E.; de Morais Junior, V.T.M.; Gaspar, R.d.O.; Velasquez, S.I.S.; Vidal, E.; Lynn Staudhammer, C.; Fearnside, P.M. 2020. Stocks of Carbon in Logs and Timber Products from Forest Management in the Southwestern Amazon. Forests 11(10): e1113. https://doi.org/10.3390/f11101113 DOI: https://doi.org/10.3390/f11101113
Silva, A.C.R. 2013. Aproveitamento de resíduos madeireiro para a produção de energia: caracterização química. M.Sc. Thesis, Universidade Federal do Amazonas, Manaus, Brazil. https://tede.ufam.edu.br/handle/tede/4288
Stangerlin, D.M.; Costa, A.F.; Garlet, A.; Pastore, T.C.M. 2013. Resistência natural da madeira de três espécies amazônicas submetidas ao ataque de fungos apodrecedores. Ciência da Madeira 4(1): 15-32. https://periodicos.ufpel.edu.br/index.php/cienciadamadeira/article/view/4056 DOI: https://doi.org/10.12953/2177-6830.v04n01a02
Tascioglu, C.; Yalcin, M.; Troya, T.; Sivrikaya, H. 2012. Termiticidal properties of some wood and bark extracts used as wood preservatives. BioResource 7(3): 2960-2969. https://doi.org/10.15376/biores.7.3.2960-2969 DOI: https://doi.org/10.15376/biores.7.3.2960-2969
Thulasidas, P.K.; Bhat, K.M. 2007. Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz als Roh- und Werkstoff 65: 121-124. https://doi.org/10.1007/s00107-006-0127-7 DOI: https://doi.org/10.1007/s00107-006-0127-7
Vek, V.; Poljanšek, I.; Humar, M.; Willför, S.; Oven, P. 2020. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Science and Technology 54(6): 1645-1662. https://doi.org/10.1007/s00226-020-01229-7 DOI: https://doi.org/10.1007/s00226-020-01229-7
Vieira, L.F.S.; Costa, A.F.; Moreira, A.C.O. 2020. Variation in the chemical composition of Amazonian woods submitted to decay fungi. Brazilian Journal of Agricultural Sciences 15(2): 1-9. https://doi.org/10.5039/agraria.v15i2a7411 DOI: https://doi.org/10.5039/agraria.v15i2a7411
Vivian, M.A.; Grosskopf, E.J.; Nunes, G.C.; Itako, A.T.; Modes, K.S. 2020. Qualidade e eficiência dos produtos naturais no tratamento conservante das madeiras de Araucaria angustifolia, Eucalyptus viminalis e Pinus taeda. Revista de Ciências Agroveterinárias 19(1): 35-47. https://doi.org/10.5965/223811711912020035 DOI: https://doi.org/10.5965/223811711912020035
Xu, K.; Li, K.; Yun, H.; Zhong, T.; Cao, X. 2013. A comparative study on the inhibitory ability of various wood-based composites against harmful biological species. BioResource 8(4): 5749-5760. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/BioRes_08_4_5749_Xu_LYZC_Comparative_Study_Inhibitory_Ability_Wood_Composites_4464.pdf DOI: https://doi.org/10.15376/biores.8.4.5749-5760
Yamamoto, K.; Simatupang, M.H.; Hashim, R. 1998. Caoutchouc in teak wood (Tectona grandis L. f.): formation, location, influence on sunlight irradiation, hydrophobicity and decay resistance. Holz als Roh- und Werkstoff 56(3): 201-209. https://doi.org/10.1007/s001070050299 DOI: https://doi.org/10.1007/s001070050299
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.