Radial variation of fiber morphology and wood density of the commercial species Drypetes sp. and Myroxylon balsamum

Authors

  • Leif Armando Portal Cahuana Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Escuela Profesional de Ingeniería Forestal. Chachapoyas, Perú. https://orcid.org/0000-0002-2717-4348
  • German Payeza Tuesta Gerencia Regional Forestal y de Fauna Silvestre Madre de Dios. Unidad de Gestión Forestal y de Fauna Silvestre, Tahuamanu. Perú. https://orcid.org/0009-0008-6355-3995
  • Erick Alberto Grandez Piña Gerencia Regional Forestal y de Fauna Silvestre Madre de Dios. Unidad de Gestión Forestal y de Fauna Silvestre, Tahuamanu. Perú. https://orcid.org/0000-0001-5826-3434
  • Marcus Vinicius Stenico da Silva Universidade de São Paulo. Escola de Agricultura Luiz de Queiroz. Departamento de Recursos Florestais. Piracicaba, Brasil. https://orcid.org/0000-0002-2395-7206
  • Mario Tomazello Universidade de São Paulo. Escola de Agricultura Luiz de Queiroz. Departamento de Recursos Florestais. Piracicaba, Brasil.

DOI:

https://doi.org/10.22320/s0718221x/2025.11

Keywords:

Fiber morphology, radial variation, tropical species, wood anatomy, wood density, X-ray densitometry

Abstract

Studying the radial variation of wood density, an essential biophysical property that reflects the quality of commercial species in tropical forests, is crucial. Understanding how these variations relate to wood anatomy provides valuable insights. In this study, we evaluated fiber morphology and radial density variation using X-ray densitometry in two commercial species from southeastern Peru. Ten trees from each species, Drypetes sp. and Myroxylon balsamum (Peru balsam), were analyzed. Fiber characteristics were assessed using macerated tissue, and density profiles were obtained via X-ray densitometry. The results indicate that in Drypetes sp., density decreases from the pith to the bark, whereas Myroxylon balsamum shows no significant radial variation. These findings are important for the efficient use and processing of these species.

Downloads

Download data is not yet available.

Author Biographies

Leif Armando Portal Cahuana, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Escuela Profesional de Ingeniería Forestal. Chachapoyas, Perú.

Biography

German Payeza Tuesta, Gerencia Regional Forestal y de Fauna Silvestre Madre de Dios. Unidad de Gestión Forestal y de Fauna Silvestre, Tahuamanu. Perú.

Biography

Erick Alberto Grandez Piña, Gerencia Regional Forestal y de Fauna Silvestre Madre de Dios. Unidad de Gestión Forestal y de Fauna Silvestre, Tahuamanu. Perú.

Biography

Marcus Vinicius Stenico da Silva, Universidade de São Paulo. Escola de Agricultura Luiz de Queiroz. Departamento de Recursos Florestais. Piracicaba, Brasil.

Biography

Mario Tomazello, Universidade de São Paulo. Escola de Agricultura Luiz de Queiroz. Departamento de Recursos Florestais. Piracicaba, Brasil.

Biography

References

Andrade, V.; Machado, S.; Figueiredo, A.; Botosso, P.; Miranda, B.; Schöngart, J. 2019. Growth models for two commercial tree species in upland forests of the Southern Brazilian Amazon. Forest Ecology and Management 438: 215-223. https://doi.org/10.1016/j.foreco.2019.02.030 DOI: https://doi.org/10.1016/j.foreco.2019.02.030

Aragão, J.R.V.; Zuidema, P.A.; Groenendijk, P. 2022. Climate-growth relations of congeneric tree species vary across a tropical vegetation gradient in Brazil. Dendrochronologia 71. e125913. https://doi.org/10.1016/j.dendro.2021.125913 DOI: https://doi.org/10.1016/j.dendro.2021.125913

Arnič, D.; Krajnc, L.; Gričar, J.; Prislan, P. 2022. Relationships Between Wood-Anatomical Features and Resistance Drilling Density in Norway Spruce and European Beech. Frontiers in Plant Science 13. e872950. https://doi.org/10.3389/fpls.2022.872950 DOI: https://doi.org/10.3389/fpls.2022.872950

Asner, G.; Mascaro, J.; Muller, H.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.; Breugel, M. 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168(4): 1147-1160. https://doi.org/10.1007/s00442-011-2165-z DOI: https://doi.org/10.1007/s00442-011-2165-z

Bhekti, Y.; Ishiguri, F.; Aiso, H.; Ohshima, J.; Yokota, S. 2017. Wood properties of 7-year-old balsa (Ochroma pyramidale) planted in East Java. International Wood Products Journal 8(4): 227-232. https://doi.org/10.1080/20426445.2017.1394560 DOI: https://doi.org/10.1080/20426445.2017.1394560

Campelo, F.; Mayer, K.; Grabner, M. 2019. xRing-An R package to identify and measure tree-ring features using X-ray microdensity profiles. Dendrochronologia 53: 17-21. https://doi.org/10.1016/j.dendro.2018.11.002 DOI: https://doi.org/10.1016/j.dendro.2018.11.002

Chavesta, M.; Tomazello-Filho, M.; Carneiro, M.; Nisgoski, S. 2020. Axial and radial evaluation of the basic density and fiber dimensions of Guazuma crinita Martius wood. Floresta 50(2). e1143. https://doi.org/10.5380/rf.v50i2.58356 DOI: https://doi.org/10.5380/rf.v50i2.58356

Edwards, D.P.; Socolar, J.B.; Mills, S.C.; Burivalova, Z.; Koh, L.P.; Wilcove, D.S. 2019. Conservation of Tropical Forests in the Anthropocene. Current Biology 29(19): R1008-R1020. https://doi.org/10.1016/j.cub.2019.08.026 DOI: https://doi.org/10.1016/j.cub.2019.08.026

Fortunel, C.; Ruelle, J.; Beauchêne, J.; Fine, P.V.A.; Baraloto, C. 2014. Wood specific gravity and anatomy of branches and roots in 113 A mazonian rainforest tree species across environmental gradients. New Phytologist 202(1): 79-94. https://doi.org/10.1111/nph.12632 DOI: https://doi.org/10.1111/nph.12632

Fujiwara, S.; Sameshima, K.; Kuroda, K.; Takamura, N. 1991. Anatomy and properties of Japanese hardwoods. I. Variation of fibre dimensions and tissue proportions and their relation to basic density. IAWA Journal 12(4): 419-424. http://dx.doi.org/10.1163/22941932-90000544 DOI: https://doi.org/10.1163/22941932-90000544

Gaitan, J.; Moya, R.; Berrocal, A. 2019. The use of X-ray densitometry to evaluate the wood density profile of Tectona grandis trees growing in fast-growth plantations. Dendrochronologia 55:71-79. https://doi.org/10.1016/j.dendro.2019.04.004 DOI: https://doi.org/10.1016/j.dendro.2019.04.004

Gonçalves, J.Q.; Durgante, F.M.; Wittmann, F.; Piedade, M.T.F.; Ortega Rodriguez, D.R.; Tomazello-Filho, M.; Parolin, P.; Schöngart, J. 2021. Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae). Trees 35: 1367-1384. https://doi.org/10.1007/s00468-021-02126-7 DOI: https://doi.org/10.1007/s00468-021-02126-7

Granato, D.; Stahle, D.; Barbosa, A.; Feng, S.; Torbenson, M.; de Assis Pereira, G.; Schöngart, J.; Barbosa, J.; Griffin, D. 2019. Tree rings and rainfall in the equatorial Amazon. Climate Dynamics 52(3-4): 1857-1869. https://doi.org/10.1007/s00382-018-4227-y DOI: https://doi.org/10.1007/s00382-018-4227-y

InsideWood. 2022. Inside Wood. Inside Wood - Search the Inside Wood Database. https://insidewood.lib.ncsu.edu/description?18

Johansen, D.A. 1940. Plant microtechnique. McGraw-Hill Book Company. 530p.

Lehnebach, R.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchêne, J. 2019. Wood Density Variations of Legume Trees in French Guiana along the Shade Tolerance Continuum: Heartwood Effects on Radial Patterns and Gradients. Forests 10(2). e80. https://doi.org/10.3390/f10020080 DOI: https://doi.org/10.3390/f10020080

Lima, I.L.; Ranzini, M.; Longui, E.L.; Barbosa, J.A. 2021. Wood characterization of Tectona grandis L. F. cultivated in Brazil: A review of the last 30 years. Research, Society and Development 10(14). e162101421549. https://doi.org/10.33448/rsd-v10i14.21549 DOI: https://doi.org/10.33448/rsd-v10i14.21549

Lima, I.; Longui, E.; Garcia, M.; Zanatto, A.; Freitas, M.; Florsheim, S. 2011. Variação radial da densidade básica e dimensões celulares da madeira de Cariniana legalis (Mart.) O. Kuntze em função da procedência. Cerne 17(4): 517-524. http://dx.doi.org/10.1590/s0104-77602011000400010 DOI: https://doi.org/10.1590/S0104-77602011000400010

Lobão, M. S.; Costa, D. P.; Almonacid, M.A.A.; Tomazello-Filho, M. 2012. Qualidade do lenho de árvores de Schizolobium parahyba Var. amazonicum, Acre, Brasil. Floresta e Ambiente 19(3): 374-384. https://doi.org/10.4322/floram.2012.044 DOI: https://doi.org/10.4322/floram.2012.044

López, L.; Villalba, R.; Stahle, D. 2022. High-fidelity representation of climate variations by Amburana cearensis tree-ring chronologies across a tropical forest transition in South America. Dendrochronologia 72. e125932. https://doi.org/10.1016/j.dendro.2022.125932 DOI: https://doi.org/10.1016/j.dendro.2022.125932

Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858. https://doi.org/10.1038/35002501 DOI: https://doi.org/10.1038/35002501

Nock, Ch.; Geihofer, D.; Grabner, M.; Baker, P.; Bunyavejchewin, S.; Hietz, P. 2009. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Annals of Botany 104(2): 297-306. https://doi.org/10.1093/aob/mcp118 DOI: https://doi.org/10.1093/aob/mcp118

Pagotto, M.; De Soto, L.; Carvalho, A.; Nabais, C.M.; Tomazello-Filho, M.; Ribeiro, A.; Lisi, C. 2017. Evaluation of X-ray densitometry to identify tree-ring boundaries of two deciduous species from semi-arid forests in Brazil. Dendrochronologia 42: 94-103. https://doi.org/10.1016/j.dendro.2017.01.007 DOI: https://doi.org/10.1016/j.dendro.2017.01.007

Panshin, A.; De Zeeuw. 1980. Textbook of wood technology. McGraw-Hill Book Company: New York, USA. 4th ed.722p.

Plaster, O.; Oliveira, J.; Abrahão, Ch.; Braz, R. 2008. Comportamento de juntas coladas da madeira serrada de Eucalyptus sp. Cerne 14(3): 251-258. https://www.redalyc.org/pdf/744/74411656009.pdf

Portal, L.A.; Figueiredo, J.V.; Camargo, J.H.; Vieira, G.; Oliveira, D.; Alves, L. M.; Latorraca, J. 2019. Variabilidad radial física y anatómica del leño de árboles de Amburana cearensis. Colombia Forestal 22(1): 17-26. https://doi.org/10.14483/2256201X.13083 DOI: https://doi.org/10.14483/2256201X.13083

Portal, L.A.; Huamán, B.A.; Mamani, E.M.; Palermo, P.M.; Latorraca, J.V. 2021. Dendrochronology of two forest species in the urban area of the city of Puerto Maldonado, Peru. Floresta 51(3). e10. https://doi.org/10.5380/rf.v51i3.72410 DOI: https://doi.org/10.5380/rf.v51i3.72410

Quintilhan, M.T.; Santini, L.; Ortega Rodriguez, D.R.; Guillemot, J.; Cesilio, G. H.M.; Chambi-Legoas, R.; Nouvellon, Y.; Tomazello-Filho, M. 2021.

Growth-ring boundaries of tropical tree species: Aiding delimitation by long histological sections and wood density profiles. Dendrochronologia 69. e125878. https://doi.org/10.1016/j.dendro.2021.125878 DOI: https://doi.org/10.1016/j.dendro.2021.125878

R Core Team. 2019. R: A language and environment for statistical computing. R Founda- tion for Statistical Computing. Vienna: s.n. ISBN 3-900051-07-0. http://www.R-project.org.

Rios, P.D.; Vieira, H.C.; Pereira, G.F.; Turmina, E.; Nicoletti, M.F. 2018. Variação radial e longitudinal da densidade básica da madeira de Pinus patula. Pesquisa Florestal Brasileira 38: 1-5. https://doi.org/10.4336/2018.pfb.38e201501016 DOI: https://doi.org/10.4336/2018.pfb.38e201501016

Sánchez-Cuervo, A.M.; de Lima, L.S.; Dallmeier, F.; Garate, P.; Bravo, A.; Vanthomme, H. 2020. Twenty years of land cover change in the southeastern Peruvian Amazon: Implications for biodiversity conservation. Regional Environmental Change 20(1). e8. https://doi.org/10.1007/s10113-020-01603-y DOI: https://doi.org/10.1007/s10113-020-01603-y

Sass, J.E. 1951. Botanical microtechnique. Constable and Company. London, UK. 3th ed. 228p. DOI: https://doi.org/10.5962/bhl.title.5706

Sibille, A. 2006. Guía de Procesamiento Industrial Fabricación de Muebles con Maderas Poco Conocidas-LKS. WWF Perú a través del Proyecto CEDEFOR. 1ra edición. Lima, Perú. 76p.

Tirak, K.; Erdin, N. 2016. Radial Variation of Annual Ring Width and Fiber Dimensions from Natural and Plantation Trees of Alder (Alnus glutinosa L. Gaertner) Wood. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 12(2): 1-12. http://ordergi.duzce.edu.tr/Dokumanlar/arsiv/2016_2_Tam.pdf

Tomazello, M.; Brazolin, S.; Chagas, M.P.; Oliveira, J.T.S.; Ballarin, A.W.; Benjamin, C. A. 2008. Application of X-ray technique in nondestructive evaluation of eucalypt wood. Maderas. Ciencia y Tecnología 10(2): 139-149. https://doi.org/10.4067/S0718-221X2008000200006 DOI: https://doi.org/10.4067/S0718-221X2008000200006

Valente, B.; Evangelista, W.; Silva, J.; Lucia, R. 2013. Variabilidade radial e longitudinal das propriedades físicas e anatômicas da madeira de angico-vermelho. Scientia Forestalis 41(100): 485-496.

Woodcock, D.W.; Shier, A.D. 2002. Wood specific gravity and its radial variations: The many ways to make a tree. Trees 16(6): 437-443. https://doi.org/10.1007/s00468-002-0173-7 DOI: https://doi.org/10.1007/s00468-002-0173-7

Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. 2009. Global Wood Density Database. Dryad Digital Repository. https://datadryad.org/stash/dataset/doi:10.5061/dryad.234

Ziemińska, K.; Westoby, M.; Wright, I.J. 2015. Broad Anatomical Variation within a Narrow Wood Density Range-A Study of Twig Wood across 69 Australian Angiosperms. Plos One 10(4). e0124892. https://doi.org/10.1371/journal.pone.0124892 DOI: https://doi.org/10.1371/journal.pone.0124892

Downloads

Published

2024-12-03

How to Cite

Portal Cahuana, L. A. ., Payeza Tuesta, G. ., Grandez Piña, E. A. ., Stenico da Silva, M. V. ., & Tomazello, M. . (2024). Radial variation of fiber morphology and wood density of the commercial species Drypetes sp. and Myroxylon balsamum. Maderas. Ciencia Y Tecnología, 27. https://doi.org/10.22320/s0718221x/2025.11

Issue

Section

Article