Physical, mechanical, and combustion properties of twelve wood species from the Brazilian Amazon
DOI:
https://doi.org/10.22320/s0718221x/2025.12Keywords:
Brazilian Amazon species, combustibility, flame time, fire exposure test, mechanical strength, wood densityAbstract
Studying the combustibility and physical‒mechanical properties of wood is important for recommending its use in construction. The objective of this study was to evaluate the combustibility, as well as the physical and mechanical properties, of twelve Brazilian Amazonian woods. Species. For each species, the combustibility parameters, fire exposure test, residual mass, loss mass, intact mass, charred area, proximate analysis, basic density, compressive strength and modulus of elasticity were determined. All the evaluated properties were significant affected by the wood species. In the fire exposure test, ignition time ranged from 21 s to 55 s while flame time was between 108 s and 233 s. Residual mass ranged from 60,7% to 82,7%, and intact areas ranged from 28,13 % to 62,68 %. Basic density values ranged from 335 kg/m3 to 889 kg/m3, compressive strength ranged from 29 MPa to 82 MPa, and the modulus of elasticity ranged from 9 GPa to 33 GPa. The wood of Hymenaea courbaril (courbaril), Manilkara huberi (masaranduba), Handroanthus serratifolius (yellow lapacho) was identified as the most suitable for structural components, ensuring greater safety against possible fires. Short-term fire exposure tests, particularly the ignition time parameter combined with residual mass and intact area, are key for assessing wood resistence to fires.
Downloads
References
Altay, Ç.; Toker, H.; Baysal, E.; Babahan, İ.; Kılıç, H. 2022. Mechanical and fire properties of oriental beech impregnated with fire-retardants and coated with polyurea/polyurethane hybrid and epoxy resins. Maderas. Ciencia y Tecnología (24): 1-14. https://doi.org/10.4067/s0718-221x2022000100423 DOI: https://doi.org/10.4067/S0718-221X2022000100423
ASTM. 2013a. Standard test method for volatile matter in the analysis of particulate wood fuels. ASTM E872-82. ASTM: West Conshohocken, PA, USA.
ASTM. 2013b. Standard test method for ash in wood. ASTM D1102-84. ASTM: West Conshohocken, PA, USA. ABNT. 2022. Projeto de estruturas de madeira - Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. NBR 7190-3. ABNT: Rio de Janeiro, Brazil.
ABNT. 2003. Wood: determination of basic density. NBR 11941. ABNT: Rio de Janeiro, Brazil.
Brasil, 2009. Plano de Manejo Florestal Sustentável-PMFS com fins madeireiros, para florestas nativas e suas formas de sucessão no bioma Amazônia. Decree Law 406 of February 02nd. Brasília, DF, Brasil. http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=578
Brun, E.J.; Bersch, A.P.; Pereira, F.A.; Silva, D.A.; Barba, Y.R.; Dorini Junior, J.R. 2018. Characterization energy of wood of three genetic materials of Eucalyptus sp. Floresta 48(1): 87-92. http://dx.doi.org/10.5380/rf.v48i1.51673. DOI: https://doi.org/10.5380/rf.v48i1.51673
Camargo, A.; Ibáñez, C.M. 2024. Fire performance of Pinus taeda wood treated with zinc borate before and after leaching. Maderas. Ciencia y Tecnología (26):1-14. http://dx.doi.org/10.22320/s0718221x/2024.35 DOI: https://doi.org/10.22320/s0718221x/2024.35
Costa, A.C.S.; Oliveira, A.C.; Pereira, B.L.C.; Silva, J.R.M.; Oliveira, M.B.; Xavier, C.N. 2021. Quality of tropical hardwood floors. Árvore 45. e4503. http://dx.doi.org/10.1590/1806-908820210000003 DOI: https://doi.org/10.1590/1806-908820210000003
Cruz, H.; Nunes, L. 2005. A madeira como material de construção. LNEC: Lisboa, Portugal. http://www.oasrn.org/3R/conteudos/areareservada/areareservada8/Madeira%20material%20de%20construcao-%20HC.pdf
Csanády, E.; Magoss, E.; Tolvaj, L. 2015. Quality of machined wood surfaces. Springer: Cham, Switzerland. https://doi.org/10.1007/978-3-319-22419-0 DOI: https://doi.org/10.1007/978-3-319-22419-0
Deng, J.; Liu, T.S.; Yao, M.; Yi, X.; Bai, G.X.; Huang, Q.R.; Li, Z. 2023. Comparative study of the combustion and kinetic characteristics of fresh and naturally aged pine wood. Fuel 343. e127962. https://doi.org/10.1016/j.fuel.2023.127962 DOI: https://doi.org/10.1016/j.fuel.2023.127962
Dias, M.S.F.; Karam, V.J. 2021. Thermal analysis of steel and concrete composite beams cross sections in fire situations. Revista IBRACON de Estruturas e Materiais 14(5): 1-20. https://doi.org/10.1590/S1983-41952021000500009 DOI: https://doi.org/10.1590/s1983-41952021000500009
Fearnside, P.M. 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90(1): 59-87. https://doi.org/10.1016/S0378-1127(96)03840-6 DOI: https://doi.org/10.1016/S0378-1127(96)03840-6
Figueroa, M.J.M.; Moraes, P.D. 2009. Wood behavior at high temperatures. Ambiente Construído 9(4): 157-174. https://doi.org/10.1590/s1678-86212009000400525 DOI: https://doi.org/10.1590/s1678-86212009000400525
Freitas, F.C.; Vinhote, E.G.; Pinto, A.C.M. 2022. Characterization of forest species in small-scale sustainable forest management plans in the state of Amazonas. BIOFIX Scientific Journal 7(1): 80-88. http://dx.doi.org/10.5380/biofix.v7i1.82333 DOI: https://doi.org/10.5380/biofix.v7i1.82333
Glass, S.V.; Zelinka, S.L. 2010. Moisture relations and physical properties of wood. In: Wood handbook-Wood as an engineering material. Ross, R. (Ed.). U.S. Department of Agriculture Forest Service, Forest Products Laboratory: Madison, WI, USA. https://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr282/chapter_04_fpl_gtr282.pdf
Haygreen, J.G.; Bowyer, J.L. 1996. Forest product and wood science. Iowa State University Press, Ames, USA. https://www.cabdirect.org/cabdirect/abstract/19960611252
ITTO. 2023. Lesser used species. ITTO: Yokohama, Ken, Japan.
IPT. 2024. Wood information. IPT:São Paulo, Brazil. https://madeiras.ipt.br/
Lengowski, E.C.; Magalhães, W.L.E.; Nisgoski, S.; Muniz, G.I.B.; Satyanarayana, K.G.; Lazzarotto, M. 2016. New and improved method of investigation using thermal tools for characterization of cellulose from Eucalyptus pulp. Thermochimica Acta 638: 44-51. https://doi.org/10.1016/j.tca.2016.06.010 DOI: https://doi.org/10.1016/j.tca.2016.06.010
Leroy, V.; Cancellieri, D.; Leoni, E. 2006. Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies. Thermochimica Acta 451(1-2): 131-138. https://doi.org/10.1016/j.tca.2006.09.017 DOI: https://doi.org/10.1016/j.tca.2006.09.017
Lima, M.D.R.; Patrício, E.P.S.; Barros Junior, U.D.O.; Assis, M.R.; Xavier, C.N.; Bufalino, L.; Trugilho, P.F.; Hein, P.R.G.; Protásio, T.P. 2020. Logging wastes from sustainable forest management as alternative fuels for thermochemical conversion systems in Brazilian Amazon. Biomass and Bioenergy 140. e105660. https://doi.org/10.1016/j.biombioe.2020.105660 DOI: https://doi.org/10.1016/j.biombioe.2020.105660
López-González, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanches-Silva, L. 2013. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresource Technology 143: 562-574. https://doi.org/10.1016/j.biortech.2013.06.052 DOI: https://doi.org/10.1016/j.biortech.2013.06.052
Luz, E.S.; Soares, A.A.V.; Goulart, S.L.; Guimarães, A.C.; Monteiro, T.C.; Protásio, T.P. 2021. Challenges of the lumber production in the Amazon region: relation between sustainability of sawmills, process yield and logs quality. Environment, Development and Sustainability 23: 4924-4948. https://doi.org/10.1007/s10668-020-00797-9 DOI: https://doi.org/10.1007/s10668-020-00797-9
Martinelli, I.E.; Reis, E.A.P. 2019. Utilização de madeira em construções brasileiras: um material inovador e sustentável. Toledo 15(15): 1-11. http://intertemas.toledoprudente.edu.br/index.php/ETIC/article/view/7821/67648491
Martins, G.C.A.; Calil Junior, C. 2017. Avaliação dos métodos teóricos de cálculo para determinação de taxas de carbonização de espécies de madeiras brasileiras. In Proceedings of the II Congresso Latino-americano de Estruturas de Madeira, Buenos Aires, Argentina. https://clem-cimad2017.unnoba.edu.ar/papers/T6-23.pdf
Massuque, J.; Assis, M.R.; Loureiro, B.A.; Matavel, C.E.; Trugilho, P.F. 2021. Influence of lignin on wood carbonization and charcoal properties of Miombo woodland native species. European Journal of Wood and Wood Products 79: 527-535. https://doi.org/10.1007/s00107-021-01669-3 DOI: https://doi.org/10.1007/s00107-021-01669-3
Melo, J.E.; Camargos, J.A.A. 2016. A madeira e seus usos. SFB/LPF/MMA: Brasília, Brazil. https://lpf.florestal.gov.br/en-us/livros-do-lpf/28-a-madeira-e-seus-usos
Melo, R.R.D.; Dacroce, J.M.F.; Rodolfo Junior, F.; Lisboa, G.D.S.; França, L.C.D.J. 2019. Lumber yield of four native forest species of the Amazon Region. Floresta e Ambiente 26(1). e20160311. https://doi.org/10.1590/2179-8087.031116 DOI: https://doi.org/10.1590/2179-8087.031116
Nahuz, M.A.R.; Miranda, M.J.A.C.; Ielo, P.K.Y.; Pigozzo, R.J.B.; Yojo, T. 2013. Catálogo de madeiras brasileiras para a construção civil. IPT - Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, Brazil. https://www.wwf.org.br/?40242/Catlogo-de-madeiras-brasileiras-para-a-construo-civil
Nunes, T.E.F. 2015. Estudo da inflamabilidade de diversos tipos de madeiras e de cortiça usados na estrutura e na envolvente de edifícios. Master Degree Dissertation. University of Coimbra, Faculty of Science and Technology. Coimbra, Portugal. https://estudogeral.uc.pt/handle/10316/38956
Pinto, E.M.; Calil-Junior, C. 2006. Estudo teórico e experimental sobre a degradação térmica e os gradientes térmicos da madeira de Eucalyptus de uso estrutural exposta ao fogo. Minerva 3(2): 131-140. https://repositorio.usp.br/item/001599581
Pinto, E.M.; Rigobello, R.; Munaiar Neto, J.; Calil Junior, C. 2008. Theoretical and experimental study of the thermal degradation of Eucalyptus timber. Forest Products Journal 58(4): 85-89. https://www.proquest.com/docview/214608939/fulltextPDF
Poletto, M.; Zattera, A.J.; Forte, M.M.C.; Santana, R.M.C. 2012. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology 109: 148-153. https://doi.org/10.1016/j.biortech.2011.11.122 DOI: https://doi.org/10.1016/j.biortech.2011.11.122
Protásio, T.P.; Scatolino, M.V.; Araújo, A.C.C.; Oliveira, A.F.C.F.; Figueiredo, I.C.R.; Assis, M.R.; Trugilho, P.F. 2019. Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood. BioEnergy Research 12: 626-641. http://dx.doi.org/10.1007/s12155-019-10004-x DOI: https://doi.org/10.1007/s12155-019-10004-x
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria.
Reis, P.C.M.D.R.; Souza, A.L.D.; Reis, L.P.; Carvalho, A.M.M.L.; Mazzei, L.; Reis, A.R.S.; Torres, C.M.M.E. 2019. Clustering of Amazon wood species based on physical and mechanical properties. Ciência Florestal 29(1): 336-346. https://doi.org/10.5902/1980509828114 DOI: https://doi.org/10.5902/1980509828114
Romero, F.M.B.; Jacovine, L.A.G.; Ribeiro, S.C.; Ferreira Neto, J.A.; Ferrante, L.; Rocha, S.J.S.S.; Torres, C.M.M.E.; Morais Júnior, V.T.M.M.; Gaspar, R.O.; Velasquez, S.I.S.; Vidal, E.; Staudhammer, C.L.; Fearnside, P.M. 2020. Stocks of carbon in logs and timber products from forest management in the Southwestern Amazon. Forests 11(10). e1113. https://doi.org/10.3390/f11101113 DOI: https://doi.org/10.3390/f11101113
SNIF. 2020. Forest Interactive Panel. SNIF: Brasília, DF, Brazil.
Sahu, S.G.; Sarkar, P.; Chakraborty, N.; Adak, A.K. 2010. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Processing Technology 91(3): 369-378. https://doi.org/10.1016/j.fuproc.2009.12.001 DOI: https://doi.org/10.1016/j.fuproc.2009.12.001
Santos, I.S.; Martins, M.A.; Pereira, E.G.; Carneiro, A.C.O. 2020a. Physical and thermal properties of eucalyptus wood charcoal. Cerne 26(1): 109-117. https://www.scielo.br/j/cerne/a/YHH8FZSMrYxMmMyhfF3fSFj/?lang=en
Santos, J.O.X.; Fernandes, S.C.; Freitas, H.S.; Barros, R.P.; Barros, L.M. 2020b. Evaluation of physical and mechanical properties of four species of Amazonian wood for use in civil construction. Research, Society and Development 9 (12). e44891211379. http://dx.doi.org/10.33448/rsd-v9i12.11379 DOI: https://doi.org/10.33448/rsd-v9i12.11379
Schmid, J.; Just, A.; Kippel, M.; Frangiacomo, M. 2015. The reduced cross-section method for evaluation of the fire resistance of timber members: discussion and determination of the zero-strength layer. Fire Technology 51: 1285-1309. https://doi.org/10.1007/s10694-014-0421-6 DOI: https://doi.org/10.1007/s10694-014-0421-6
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. 2012. NIH Image to Image j: 25 years of image análisis. Nature Methods 9: 671-675. http://dx.doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089
Silva, M.O.S.; Silva, M.G.; Bufalino, L.; Assis, M.R.; Gonçalves, D.A.; Trugilho, P.F.; Protásio, T.P. 2021. Características termogravimétricas e combustão da madeira de Tachigali vulgaris proveniente de plantios com diferentes espaçamentos. Scientia Forestalis 49(129). e3164. https://doi.org/10.18671/scifor.v49n129.01 DOI: https://doi.org/10.18671/scifor.v49n129.01
Soares, V.C.; Bianchi, M.L.; Trugilho, P.F.; Pereira, A.J.; Höfler, J. 2014. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore 38(3): 543-549. https://doi.org/10.1590/S0100-67622014000300017 DOI: https://doi.org/10.1590/S0100-67622014000300017
Sousa, W.C.S.; Barbosa, L.J.; Soares, A.A.V.; Goulart, S.L.; Protásio, T.P. 2019. Wood colorimetry for the characterization of Amazonian tree species: a subsidy for a more efficient classification. Cerne 25(4): 451-462. https://doi.org/10.1590/01047760201925042650 DOI: https://doi.org/10.1590/01047760201925042650
Tenorio, C.; Moya, R. 2013. Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochimica Acta 563: 12-21. https://doi.org/10.1016/j.tca.2013.04.005 DOI: https://doi.org/10.1016/j.tca.2013.04.005
Ter-Steege, H.; Pitman, N.C; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.F.; Monteagudo, A.; Vargas, P.N.; Montero, J.C.; Feldpausch, T.R.; Coronado, E.N.H.; Killeen, T.J.; Mostacedo, B.; Vasquez, R.; Assis, R.L.; Terborgh, J.; Wittmann, F.; Andrade, A.; Laurance, W.F.; Laurance, S.G.W.; Marimon, B.S.; Marimon, B.H.; Guimarães Vieira, I.C.; Amaral, I.L.; Brienen, R.; Castellanos, H.; Cárdenas López, D.; Duivenvoorden, J.F.; Mogollón, H.F.; de Almeida Matos, F.D.; Dávila, N.; García-Villacorta, R.; Stevenson Diaz, P.R.; Costa, F.; Emilio, T.; Levis, C.; Schietti, J.; Souza, P.; Alonso, A.; Dallmeier, A.; Duque Montoya, A.J.; Fernandez Piedade, M.T.; Araujo-Murakami, A.; Arroyo, L.; Gribel, R.; Fine, P.V.A.; Peres, C.A.; Toledo, M.; Aymard, G.A.; Baker, T.R.; Cerón, C.; Engel, J.; Henkel , T.W.; Maas, P.; Petronelli, P.; Stropp, J.; Zartman, C.E.; Daly, D.; Neill, D.; Silveira, M.; Ríos Paredes, M.; Chave, J.; de Andrade Lima Filho, D.; Møller Jørgensen, P.; Fuentes, A.; Schöngart, J.; Cornejo Valverde, F.; Di Fiore, A.; Jimenez, E.M.; Peñuela Mora, M.C.; Phillips, J.F.; Rivas, G.; van Andel, T.R.; von Hildebrand, P.; Hoffman, B.; Zent, E.L.; Malhi, Y.; Prieto, A.; Rudas, A.; Ruschell, A.R.; Silva, N.; Vos, V.; Zent, S.; Oliveira, A.A.; Cano Schutz, A.; Gonzales, T.; Trindade Nascimento, M.; Ramirez-Angulo, H.; Sierra, R.; Tirado, M.; Umaña Medina, M.N.; van der Heijden, G.; Vilanova Torre, C.I.A.V.E.; Vriesendorp, C.; Wang, O.; Young, K.R.; Baider, C.; Balslev, H.; Ferreira, C.; Mesones, I.; Torres-Lezama, A.; Urrego Giraldo, L.E.; Zagt, R.; Alexiades, M.N.; Hernandez, L.; Huamantupa-Chuquimaco, I.; Milliken, W.; Palacios Cuenca, W.; Pauletto, D.; Valderrama Sandoval, E.; Valenzuela Gamarra, L.; Dexter, K.G.; Feeley, K.; Lopez-Gonzalez, G.; Silman, M.R. 2013. Hyperdominance in the Amazonian tree flora. Science 342(6156). e1243092. https://doi.org/10.1126/science.1243092 DOI: https://doi.org/10.1126/science.1243092
Tondi, G.; Wieland, S.; Wimmer, T.; Thevenon, M.F.; Pizzi, A.; Petutschnigg, A. 2012. Tannin-boron preservatives for wood buildings: mechanical and fire properties. European Journal of Wood and Wood Products 70: 689-696. https://doi.org/10.1007/s00107-012-0603-1 DOI: https://doi.org/10.1007/s00107-012-0603-1
Viana, M.C.; Medeiros, A.C.; Gonçalves, J.R.M.R. 2019. Análise e comportamento das estruturas de madeira a temperaturas elevadas. Revista Tecnológica da Universidade Santa Úrsula 2(2): 90-103. http://revistas.icesp.br/index.php/TEC-USU/article/view/695/719
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.