Efficiency analysis of the Chilean sawmill industry
DOI:
https://doi.org/10.22320/s0718221x/2025.15Keywords:
Chilean sawmill industry, efficiency analysis, sawmill efficiency, sawn wood, lumber production, stochastic frontier analysisAbstract
Chile plays a significant role in global sawn wood production, ranking 14th in total roundwood and 10th in coniferous sawn wood production in 2022, contributing significantly to the demand for wood products. In the same year, the country exported wood products worth a remarkable $US 6.682 million of, underscoring its importance in the global wood industry. Despite its prominence, the sector has faced significant including mega forest fires and the COVID-19 pandemic, which have adversely affected its performance. One notable issue is the decline in the number of active sawmill units, with only 61 currently producing sawn wood with structural characteristics. The highlights the pressing need to quantify and optimize efficiency within the industry. To address this, Stochastic Frontier Analysis a valuable mathematical framework for evaluating industry efficiency, was employed. Using a dataset compiled by the Chilean Forestry Institute and applying the Stochastic Frontier Analysis methodology, this research assessed the average efficiency of the Chilean sawmill sector. The analysis, based on two different models, consistently revealed a decline in average efficiency during the pandemic. Furthermore, it identified a longitudinal gradient in the efficiency of sawn wood production, with technical inefficiency decreasing towards the southern regions of the country. However, the study did not find direct evidence of a correlation between productivity and the production scale of sawmills. Instead, cost factors, including raw materials, labor, and supplementary expenses, emerged as critical areas requiring careful attention to improve the overall efficiency of the industry.
Downloads
References
Álvarez, V.; Pardo, E.; Poblete, P. 2022a. Boletín Estadístico N°189: La Industria del Aserrío 2022. Instituto Forestal: Santiago, Chile. https://doi.org/10.52904/20.500.12220/32690 DOI: https://doi.org/10.52904/20.500.12220/32690
Álvarez, V.; Poblete, P.; Soto, D.; Gysling, J.; Kahler, C.; Pardo, E.; Bañados, J.C.; Baeza, D. 2022b. Boletín Estadístico N°187: Anuario Forestal 2022. Instituto Forestal: Santiago, Chile. https://doi.org/10.52904/20.500.12220/32501 DOI: https://doi.org/10.52904/20.500.12220/32501
Alzamora, R.; Pinto, A.; Ulloa, C.; Aguilera, A. 2019. Modelamiento de la eficiencia productiva de trozas de lenga (Nothofagus pumilio) destinadas a la producción de madera aserrada en la Patagonia chilena. Madera Bosques 25(3). https://doi.org/10.21829/myb.2019.2531746 DOI: https://doi.org/10.21829/myb.2019.2531746
Banco Central. 2011. Base de Datos Estadísticos (BDE). https://si3.bcentral.cl/Siete/
Bibi, Z.; Khan, D.; Haq, I. 2021. Technical and environmental efficiency of agriculture sector in south Asia: A stochastic frontier analysis approach. Environment, Development and Sustainability 23:9260-9279. https://doi.org/10.1007/s10668-020-01023-2 DOI: https://doi.org/10.1007/s10668-020-01023-2
Coelli, T.; Henningsen, A. 2020. frontier: Stochastic Frontier Analysis R package version 1.1-8. https://CRAN.R-Project.org/package=frontier
Corte, A. 2015. Fronteras de Producción. Universidad de Oviedo, Oviedo, España. https://digibuo.uniovi.es/dspace/bitstream handle/10651/29778/TFM_%C3%81ngelaCorteGonz%C3%A1lez.pdf?sequence=4&isAllowed=y
FAO. 2023. Food and agriculture data. https://www.fao.org/faostat/en/#home
Ferrara, G. 2020. Stochastic frontier models using r. In Financial, Macro and Micro Econometrics Using R. Hrishikesh, D.V.; Rao, C.R. (Eds.). Elsevier: Amsterdam, Netherlands. https://doi.org/10.1016/bs.host.2018.11.004 DOI: https://doi.org/10.1016/bs.host.2018.11.004
Ferrara, G.; Vidoli, F. 2017. Semiparametric stochastic frontier models: A generalized additive model approach. European Journal of Operational Research 258(2): 761-777. https://doi.org/10.1016/j.ejor.2016.09.008 DOI: https://doi.org/10.1016/j.ejor.2016.09.008
Ferrara, G.; Vidoli, F. 2018. semsfa: Semiparametric Estimation of Stochastic Frontier Models, R package version 1.1. https://CRAN.R-project.org/package=semsfa
Giannakas, K.; Tran, K.; Tzouvelekas, V. 2003. On the choice of functional form in stochastic frontier modeling. Empirical Economics 28:75-100. https://doi.org/10.1007/s001810100120 DOI: https://doi.org/10.1007/s001810100120
Gysling, J.; Kahler, C.; Soto, D.; Mejías, W.; Poblete, P.; Álvarez, V.; Bañados, J.C.; Baeza, D.; Pardo, E. 2021. Madera y construcción. Instituto Forestal: Santiago, Chile. https://doi.org/10.52904/20.500.12220/31291 DOI: https://doi.org/10.52904/20.500.12220/31291
Hasties, T.; Tibshirani, R. 1986. Generalized additive models. Statistical Science 1(3): 297-318. https://doi.org/10.1214/ss/1177013604 DOI: https://doi.org/10.1214/ss/1177013604
Helvoigt, T.; Adams, D. 2009. A stochastic frontier analysis of technical progress, efficiency change and productivity growth in the pacific northwest sawmill industry. Forest Policy and Economics 11(4): 280-287. https://doi.org/10.1016/j.forpol.2009.04.006 DOI: https://doi.org/10.1016/j.forpol.2009.04.006
Kahler, C.; Gysling, J.; Álvarez V.; Pardo, E. 2023. Mercado Forestal- Boletín N°92. Instituto Forestal, Santiago, Chile. https://doi.org/10.52904/20.500.12220/32622 DOI: https://doi.org/10.52904/20.500.12220/32622
Kumbhakar, S.; Parmeter, C.; Zelenyuk, V. 2020. Stochastic frontier analysis: Foundations and advances II. In Handbook of production economics. Ray, S.; C.; Chambers, R. G.; Kumbhakar, S. C. (Eds.). Springer: Singapure. https://doi.org/10.1007/978-981-10-3450-3_11-1 DOI: https://doi.org/10.1007/978-981-10-3450-3_11-1
Mejías, W. 2022. Documento de Divulgación N°66: Predicción de precios de productos forestales usando modelos ARIMA. Instituto Forestal: Santiago, Chile. https://doi.org/10.52904/20.500.12220/32066 DOI: https://doi.org/10.52904/20.500.12220/32066
Moreira, V.; Bravo-Ureta, B.; Carrillo, B.; Vásquez, J. 2006. Medidas de eficiencia técnica para pequeños productores de leche del sur de chile: Un análisis con fronteras estocásticas y datos de panel desbalanceado. Archivos de Medicina Veterinaria 38(1): 25-32. http://dx.doi.org/10.4067/S0301-732X2006000100004 DOI: https://doi.org/10.4067/S0301-732X2006000100004
Nguyen, H. 2020. A closer look at stochastic frontier analysis in economics. Asian Journal of Economics and Banking 4(3): 3-28. https://doi.org/10.1108/AJEB-07-2020-0032 DOI: https://doi.org/10.1108/AJEB-07-2020-0032
Niquidet, K.; Nelson, H. 2010. Sawmill production in the interior of British Columbia: A stochastic ray frontier approach. Journal of Forest Economics 16(4): 257-267. https://doi.org/10.1016/j.jfe.2010.04.001 DOI: https://doi.org/10.1016/j.jfe.2010.04.001
Nyrud, A.Q.; Baardsen, S. 2003. Production efficiency and productivity growth in Norwegian sawmilling. Forest Science 49(1): 89-97. https://doi.org/10.1093/forestscience/49.1.89 DOI: https://doi.org/10.1093/forestscience/49.1.89
Núñez, M.; Díaz, L.; Casimiro, A.; Romero, C. 2004. Estudio de la eficiencia de las empresas de la cadena de la madera en la comunidad de Madrid. Cuadernos de la Sociedad Española de Ciencias Forestales (18): 115-120. https://dialnet.unirioja.es/servlet/articulo?codigo=2980777
Ogundari, K. 2010. Estimating and analyzing cost efficiency of sawmill industries in Nigeria: A stochastic frontier approach. China Agricultural Economic Review 2(4): 420-432. https://doi.org/10.1108/17561371011097731 DOI: https://doi.org/10.1108/17561371011097731
Pardo, E.; Bañados, J.C. 2022. Boletín N°182 septiembre 2022: Precios Forestales. Instituto Forestal, Santiago, Chile. https://doi.org/10.52904/20.500.12220/32502 DOI: https://doi.org/10.52904/20.500.12220/32502
R. Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. https://www.r-project.org/
Rodríguez, R.; Brugiafreddo, M.; Raña, E. 2017. Eficiencia técnica en la agricultura familiar: Análisis envolvente de datos (dea) versus aproximación de fronteras estocásticas (sfa). Nova scientia 9(18): 342-370. https://www.scielo.org.mx/pdf/ns/v9n18/2007-0705-ns-9-18-00342.pdf DOI: https://doi.org/10.21640/ns.v9i18.697
Salehirad, N.; Sowlati, T. 2005. Performance analysis of primary wood producers in British Columbia using data envelopment analysis. Canadian Journal of Forest Research 35(2): 285-294. https://doi.org/10.1139/x04-154 DOI: https://doi.org/10.1139/x04-154
Strange, N.; Bogetoft, P.; Ottaviani, G.; Talbot, B.; Holm, A.; Astrup, R. 2021. Applications of DEA and SFA in benchmarking studies in forestry: state-of-the-art and future directions. International Journal of Forest Engineering 32(1): 87-96. https://doi.org/10.1080/14942119.2021.1914809 DOI: https://doi.org/10.1080/14942119.2021.1914809
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. R package version 3.3.3. https://CRAN.R-project.org/package=ggplot2
Wissler, C. 1905. The spearman correlation formula. Science 22(558): 309-311. https://doi.org/10.1126/science.22.558.309 DOI: https://doi.org/10.1126/science.22.558.309
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.