Physical and mechanical aging of wood-plastic composites. Non-destructive methods for quality control

Authors

  • Ignacio Bobadilla Maldonado Universidad Politécnica de Madrid. ETSI de Montes, Forestal y del Medio Natural. Departamento de Ingeniería y Gestión Forestal y Ambiental. Madrid, Spain. https://orcid.org/0000-0002-4627-3130
  • Roberto Martínez Universidad de Valladolid. Timber Structures and Wood Technology Research Group. Valladolid, Spain. https://orcid.org/0000-0002-0567-1781
  • Hamed Matini Behzad Universidad Politécnica de Madrid. ETSI de Montes, Forestal y del Medio Natural. Departamento de Ingeniería y Gestión Forestal y Ambiental. Madrid, Spain. Postdoctoral Researcher https://orcid.org/0009-0004-5632-575X
  • Everton Hillig UNICENTRO. Midwestern State University. Faculty of Forestry Engineering. Riozinho, Brazil.

DOI:

https://doi.org/10.22320/s0718221x/2025.18

Keywords:

Penetration tester, screw withdrawal force, stress wave, ultrasound, wood-plastic composites, non-destructive testing, aging tests, mechanical and physical aging, mechanical degradation

Abstract

This study investigates the relationship between laboratory aging, physical and mechanical changes, and the outcomes of non-destructive testing. A total of 45 composite specimens containing 60 % wood fiber, 35 % low-density polyethylene, and 5 % additives were tested. A laboratory aging process, consisting of water immersion at 20 ºC and 50 ºC for a total of 56 days, was applied to the specimens. During the aging process, several batches of specimens were extracted and tested to measure their physical (density) and mechanical properties (bending strength and modulus of elasticity). Non-destructive testing, including ultrasound and stress wave devices, a screw withdrawal resistance meter, and a penetration tester, were employed. Results indicated that temperature had a greater influence on the WPC deterioration than humidity. A decrease in density (2 % - 4 %) and a significant reduction in mechanical properties (20 % - 60 %) were observed. The non-destructive methods used proved to be reliable estimators of composite properties, especially ultrasound wave propagation, confirming previous findings on other materials.

Downloads

Download data is not yet available.

Author Biographies

Ignacio Bobadilla Maldonado, Universidad Politécnica de Madrid. ETSI de Montes, Forestal y del Medio Natural. Departamento de Ingeniería y Gestión Forestal y Ambiental. Madrid, Spain.

Biography

Roberto Martínez, Universidad de Valladolid. Timber Structures and Wood Technology Research Group. Valladolid, Spain.

Biography

Hamed Matini Behzad, Universidad Politécnica de Madrid. ETSI de Montes, Forestal y del Medio Natural. Departamento de Ingeniería y Gestión Forestal y Ambiental. Madrid, Spain. Postdoctoral Researcher

Biopgraphy

Everton Hillig, UNICENTRO. Midwestern State University. Faculty of Forestry Engineering. Riozinho, Brazil.

Biography

References

ASTM. 2019. Standard guide for evaluating mechanical and physical properties of Wood-plastic composite products ASTM D7031-11.2019. Philadelphia, PA.

Bader, T.K.; Dastoorian, F.; Ebrahimi, G.; Unger, G.; Lahayne, O.; Hellmich, C.; Pichler, B. 2016. Combined ultrasonic-mechanical characterization of orthotropic elastic properties of an unrefined bagasse fiber-polypropylene composite. Composites Part B: Engineering 95: 96-104. https://doi.org/10.1016/j.compositesb.2016.03.070 DOI: https://doi.org/10.1016/j.compositesb.2016.03.070

Beg, M.D.H.; Pickering, K. 2008. Reprocessing of wood fibre reinforced polypropylene composites. Part II: Hygrothermal ageing and its effects. Composites Part A: Applied Science and Manufacturing 39(7):1568-1571. https://doi.org/10.1016/j.compositesa.2008.06.002 DOI: https://doi.org/10.1016/j.compositesa.2008.06.002

Bobadilla, I.; Martín, M.; Esteban, M.; Íñiguez-González, G.; Arriaga, F. 2009. Non-destructive methods to estimate physical and biological aging particle and fibre boards. Proceedings of the 16th International Symposium on Nondestructive Testing of Wood. Beijing, Forestry University.

Bobadilla, I.; Robles, M.; Martínez, R.; Íñiguez-González, R.; Arriaga, F. 2011. In situ acoustic methods to estimate the physical and mechanical aging of Oriented Strand Board. Proceedings of the 17 International Nondestructive Testing and Evaluation of Wood Symposium. Sopron, Hungary: University of West Hungary. https://oa.upm.es/12466/

Bobadilla, I.; Iñiguez-Gonzalez, G.; Esteban, M.; Arriaga, F. 2012. Vibration Method for the Prediction of Aging Effect on Properties of Particleboard and Fibreboard. Forest Products Journal 62(1): 69-74. https://doi.org/10.13073/FPJ-D-11-00137.1 DOI: https://doi.org/10.13073/FPJ-D-11-00137.1

Chung, M.J.; Wang, S.Y. 2019. Physical and mechanical properties of composites made from bamboo and woody wastes in Taiwan. Journal of Wood Science 65: 57. https://doi.org/10.1186/s10086-019-1833-1 DOI: https://doi.org/10.1186/s10086-019-1833-1

Gholizadeh, S. 2016. A review of non-destructive testing methods of composite materials. Proceedings of the XV Portuguese Conference on Fracture, PCF 10-12, Paço de Arcos, Portugal. https://doi.org/10.1016/j.prostr.2016.02.008 DOI: https://doi.org/10.1016/j.prostr.2016.02.008

Haseli, M.; Layeghi, M.; Hosseinabadi, H.Z. 2020. Evaluation of modulus of elasticity of date palm sandwich panels using ultrasonic wave velocity and experimental models. Measurement 149: e107016. https://doi.org/10.1016/j.measurement.2019.107016 DOI: https://doi.org/10.1016/j.measurement.2019.107016

Lockard, C. D. 2015. Anomaly detection in radiographic images of composite materials via crosshatch regression. MSc Thesis. Mills College. 76p. ProQuest Dissertations & Theses Global. https://ui.adsabs.harvard.edu/abs/2015PhDT........43L/abstract (access required).

Mirbolouk, P.; Roohnia, M. 2015. Evaluation of dynamic modulus of elasticity of medium density fibreboard panel from longitudinal vibration tests on specimens. BioResources 10(1) 613-621. https://doi.org/10.15376/biores.10.1.613-621 DOI: https://doi.org/10.15376/biores.10.1.613-621

Mubarak, A.K.; Idriss-Ali, K.M. 1993. Effect of moisture and heat on mechanical properties of wood and wood-plastic composites. Polymer-Plastics Technology and Engineering 32(1-2):5-13. https://doi.org/10.1080/03602559308020151 DOI: https://doi.org/10.1080/03602559308020151

Najafi, S.K.; Ebrahimi, G.; Behjati, S. 2008. Nondestructive evaluation of wood plastic composites using ultrasonic technique. Proceedings of the 38th International Conference and NDT Exposition. Brno, Czech Republic, p. 87-94. Brno: Brno University of Technology. https://www.ndt.net/article/defektoskopie2008/papers/87.pdf

Nesvijski, E.G. 2000. Some aspects of ultrasonic testing of composites. Composite Structures 48 (1-3): 151-155. https://doi.org/10.1016/S0263-8223(99)00088-4 DOI: https://doi.org/10.1016/S0263-8223(99)00088-4

Nzokou, P.; Freed, J.; Kamdem, P. 2006. Relationship between non-destructive and static modulus of elasticity of commercial wood plastic composites. Holz als Roh- und Werkstoff 64: 90-93. https://doi.org/10.1007/s00107-005-0080-x DOI: https://doi.org/10.1007/s00107-005-0080-x

Pulngern, T.; Chitsamran, T.; Chucheepsakul, S.; Rosarpitak, S.; Patcharaphun, N.; Sombatsompop, N. 2016. Effect of temperature on mechanical properties and creep responses for wood/PVC composite. Construction and Building Materials 111: 191-198. https://doi.org/10.1016/j.conbuildmat.2016.02.051 DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.051

Smith, P.M.; Wolcott, M.P. 2006. Opportunities for wood/natural fiber-plastic composites in residential and industrial application. Forest Products Journal 56(3): 4-11.

Segerholm, B.K.; Ibach, R.E.; Walinder, M.E.P. 2012. Moisture sorption in artificially aged wood-plastic composites. BioResources 7(1): 1283-1293. https://doi.org/10.15376/biores.7.1.1283-1293 DOI: https://doi.org/10.15376/biores.7.1.1283-1293

UNE. 1993. Wood-based panels - Determination of density. UNE-EN 323.

UNE. 1994. Wood-based panels - Determination of modulus of elasticity in bending and of bending strength. UNE-EN 310.

UNE. 1994. Wood-based panels - Determination of moisture content. UNE-EN 322.

UNE. 2018. Composites made from cellulose-based materials and thermoplastics (usually called wood-polymer composites (WPC) or natural fibre composites (NFC)) - Part 1: Test methods for characterisation of compounds and products. UNE EN 15534-1:2014+A1:2018.

Zhang, L.; Tiemann, A.; Zhang, T.; Gauthier, T.; Hsu, K.; Mahamid, M.; Moniruzzaman, P.K.; Ozevin, D. 2021. Nondestructive assessment of cross-laminated timber using non-contact transverse vibration and ultrasonic testing. European Journal of Wood and Wood Products 79(2): 335-347. https://doi.org/10.1007/s00107-020-01644-4 DOI: https://doi.org/10.1007/s00107-020-01644-4

Downloads

Published

2025-01-30

How to Cite

Bobadilla Maldonado, I. ., Martínez, R. ., Matini Behzad, H. ., & Hillig, E. . (2025). Physical and mechanical aging of wood-plastic composites. Non-destructive methods for quality control. Maderas. Ciencia Y Tecnología, 27. https://doi.org/10.22320/s0718221x/2025.18

Issue

Section

Article