Preliminary study of Acacia dealbata logs for use in construction: Visual characterization and non-destructive testing
DOI:
https://doi.org/10.22320/s0718221x/2025.23Keywords:
Acacia dealbata, acoustic testing, dynamic modulus of elasticity, small-diameter logsAbstract
This study provides a preliminary mechanical characterization of minimally processed Acacia dealbata logs to assess their potential valorisation as a by-product of invasive species management. A total of 45 logs (90–143 mm diameter) from two harvest seasons groups, spring (17 logs, 2.0 m) and winter (28 logs, 2.4 m), were visually selected and evaluated for dynamic modulus of elasticity using longitudinal stress wave and transverse vibration tests. Testing was conducted in two moisture content states: air-dried (> 12%) and kiln-dried (≈ 12%). Significant differences between the two groups necessitated separate analyses and suggested a relationship between harvesting season and physical-mechanical properties. Although dynamic properties increased post-kiln drying, initial dynamic modulus of elasticity values were lower due to elevated initial moisture content. Visual characteristics exhibited weak correlations with dynamic properties, whereas high correlations were observed between adjusted dynamic modulus of elasticity values for both moisture states (r > 0,90 for longitudinal stress wave; r > 0,70 for transverse vibration). Adjusted dynamic modulus of elasticity values (18,29/14,00 GPa for longitudinal stress wave; 16,32/12,69 GPa for transverse vibration) were comparable to prior studies and support a potential classification of Acacia dealbata (mimosa) logs for structural applications.
Downloads
References
ASTM. 2017. Standard Test Methods of Static Tests of Wood Poles. ASTM D1036-99. ASTM. West Conshohocken, PA, USA
Bukauskas, A.; Mayencourt, P.; Shepherd, P.; Sharma, B.; Mueller, C.; Walker, P.; Bregulla, J. 2019. Whole timber construction: A state of the art review. Construction and Building Materials 213: 748-769. https://doi.org/10.1016/j.conbuildmat.2019.03.043
Carreira, M.; Dias, A.; de Alcântara, P. 2017. Nondestructive Evaluation of Corymbia citriodora Logs by Means of the Free Transverse Vibration Test. Journal of Nondestructive Evaluation 36(2): 2-8. https://doi.org/10.1007/s10921-017-0401-0
Chahal, A.; Ciolkosz, D.; Puri, V.; Liu, J.; Jacobson, M. 2020. Factors affecting wood-bark adhesion for debarking of shrub willow. Biosystems Engineering 196: 202-209. https://doi.org/10.1016/j.biosyste-mseng.2020.05.019
Chan, J.; Walker, J.; Raymond, C. 2011. Effects of moisture content and temperature on acoustic velocity and dynamic MOE of radiata pine sapwood boards. Wood Science and Technology 45(4): 609-626. https://doi.org/10.1007/s00226-010-0350-6
Correia, M.; Castro, S.; Ferrero, V.; Crisóstomo, J.; Rodríguez-Echeverría, S. 2014. Reproductive biology and success of invasive Australian acacias in Portugal. Botanical Journal of the Linnean Society 174(4): 574-588. https://doi.org/10.1111/boj.12155
Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. 2015. Methods to determine wood moisture content and their applicability in monitoring concepts. Journal of Civil Structural Health Monitoring 5(2): 115-127. https://doi.org/10.1007/s13349-014-0082-7
Dimou, V.; Kaziolas, D.N.; Zygomalas, I.; Avtzis, N. 2017. Influence of biotic factors on the mechanical properties of wood, taking into account the time of harvesting. Wood Material Science & Engineering 12(3): 140-148. https://doi.org/10.1080/17480272.2015.1063004
EN. 2003. Structural round timber - Test methods. EN 14251-2003. CEN.
EN. 2003. Structural timber - Strength classes. EN 338-2003. CEN.
EN. 2016. Structural timber - Determination of characteristic values of mechanical properties and density. EN 384-2016. CEN.
Feng, X.; Wang, X.; Thomas, E.; Liu, Y.; Brashaw, B.; Ross, R. 2018. Defect detection and quality assessment of hardwood logs: Part 2 - Combined acoustic and laser scanning system. Wood and Fiber Science 50(3): 310-322. https://doi.org/10.22382/wfs-2018-030
Fuentes-Ramírez, A.; Pauchard, A.; Cavieres, L.; García, R. 2011. Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. Forest Ecology and Management 261(6): 1003-1009. https://doi.org/10.1016/j.foreco.2010.12.018
Green, D. W.; Evans, J. W.; Murphy, J. F.; Hatfield, C. A.; Gorman, T. M. 2005. Mechanical grading of 6-inch-diameter lodgepole pine logs for the travelers’ rest and rattlesnake creek bridges. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, WI: U.S. https://doi.org/10.2737/FPL-RN-297
ISO. 2014. Physical and Mechanical Properties of Wood -Test Methods for Small Clear Wood Specimen Part 1: Determination of Moisture Content for Physical and Mechanical Tests. ISO 13061-1. ISO.
Larson, D.; Mirth, R.; Wolfe, R. 2004. Evaluation of small-diameter ponderosa pine logs in bending. Forest Products Laboratory 54(12): 52-58. https://www.fpl.fs.usda.gov/documnts/pdf2004/fpl_2004_lar-son001.pdf
Llana, D.; Short, I.; Harte, A. 2020. Use of non-destructive test methods on Irish hardwood standing trees and small-diameter round timber for prediction of mechanical properties. Annals of Forest Science logo Annals of Forest Science 77(3). https://doi.org/10.1007/s13595-020-00957-x
Lorenzo, P.; Morais, M.C. 2023. Strategies for the Management of Aggressive Invasive Plant Species. Plants 12. e2482. https://doi.org/10.3390/plants12132482
Martins, C.; Monteiro, S.; Knapic, S.; Dias, A. 2020. Assessment of Bending Properties of Sawn and Glulam Blackwood in Portugal. Forests 11. e418. https://doi.org/10.3390/f11040418
Merz, K.; Niemann, A.; Torno, S. 2021. Building with hardwood, Innovation through an almost forgotten building material. DETAIL Business information GmbH, Munich. Germany.
Monteiro, A.; Gonçalves, J.; Fernandes, R.; Alves, S.; Marcos, B.; Lucas, R.; Teodoro, A.; Honrado, J. 2017. Estimating invasion success by non-native trees in a national park combining worldview-2 very high resolution satellite data and species distribution models. Diversity 9(1). e6. https://doi.org/10.3390/d9010006
Montero, M.J.; de la Mata, J.; Esteban, M.; Hermoso, E. 2015. Influence of moisture content on the wave velocity to estimate the mechanical properties of large cross-section pieces for structural use of scots pine from Spain. Maderas. Ciencia y Tecnología 17(2): 407-420. https://doi.org/10.4067/S0718-221X2015005000038
Möttönen, V.; Heräjärvi, H.; Koivunen, H.; Lindblad, J. 2004. Influence of felling season, drying method and within-tree location on the Brinell hardness and equilibrium moisture content of wood from 27-3-year-old Betula pendula. Scandinavian Journal of Forest Research 19(3): 241-249. https://doi.org/10.1080/02827580410029327
Mukaka, M.M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal 24(3): 69-71. https://pubmed.ncbi.nlm.nih.gov/23638278/
Nunes, L.J.R.; Meireles, C.I.R.; Gomes, C.J.P.; Ribeiro, N.M.C.A. 2022. Acacia dealbata Link. Above ground Biomass Assessment: Sustainability of Control and Eradication Actions to Reduce Rural Fires Risk. Fire 5(1). e7. https://doi.org/10.3390/FIRE5010007
Omonte, M.; Valenzuela-Hurtado, L. 2020. Relationship between acoustic wave velocity and different characteristics of wood in Eucalyptus nitens trees with sawing dimensions. Maderas. Ciencia y Tecnología 22(4): 559-568. https://doi.org/10.4067/S0718-221X2020005000414
Opazo-Vega, A.; Rosales, V.; Oyarzo-Vera, C. 2021. Non-Destructive Assesment of the Dynamic Elasticity Modulus of Eucalyptus nitens Timber Boards. Materials 14(2). e269. https://doi.org/10.3390/ma14020269
Papandrea, S.F.; Cataldo, M.F.; Bernardi, B.; Zimbalatti, G.; Proto, A.R. 2022. The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs. Forests 13(8). https://doi.org/10.3390/f13081273
Pinilla, J.C.; Vásquez, L.; Hernández, G.; Luengo, K.; Campos, R.; Elgueta, P.; Catalán, J.; Navarrete, M. 2019. Tensiones admisibles de la madera aserrada de aromo (Acacia dealbata D. Link.) clasificada visualmente. Informe Técnico N° 222. Instituto Forestal, Santiago, Chile. https://doi.org/10.52904/20.500.12220/29175
Rais, A.; Pretzsch, H.; Van De Kuilen, J.W.G. 2014. Roundwood pre-grading with longitudinal acoustic waves for production of structural boards. European Journal of Wood and Wood Products 72(1): 87-98. https://doi.org/10.1007/s00107-013-0757-5
Ranta-Maunus, A. 1999. Round small-diameter timber for construction: Final report of project FAIR CT 95-0091. VTT Technical Research Centre of Finland, Espoo, Finland. https://publications.vtt.fi/pdf/publica-tions/1999/P383.pdf
Santos, A.J.A.; Anjos, O.M.S.; Simões, R.M.S. 2006. Papermaking potential of Acacia dealba- ta and Acacia melanoxylon. Appita : Technology, Innovation, Manufacturing, Environment 59(1): 58-64. https://search.informit.org/doi/10.3316/informit.586621241335076
Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. 2019. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 10(9). e728. https://doi.org/10.3390/f10090728
Skatter, S.; Dyrseth, A.A. 1997. Vibration modes of logs measured by TV holography. Wood Fiber Sci 29(3): 228-238. https://wfs.swst.org/index.php/wfs/article/view/2045
Simpson, W.T.; Wang, X. 2004. Estimating air-drying times of small-diameter ponderosa pine and Douglas-fir logs. Forest Products Journal 54(12): 24-28. https://research.fs.usda.gov/treesearch/9265
Tomczak, K.; Tomczak, A.; Jelonek, T. 2020. Effect of natural drying methods on moisture content and mass change of scots pine roundwood. Forests 11(6):1-12. https://doi.org/10.3390/f11060668
Unterwieser, H.; Schickhofer, G. 2011. Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency- and ultrasonic runtime measurement. European Journal of Wood and Wood Products 69(2): 171-181. https://doi.org/10.1007/s00107-010-0417-y
Vega, A.; González, L.; Fernández, I.; González, P. 2019. Grading and mechanical characterization of small-diameter round chestnut (Castanea sativa Mill.) timber from thinning operations. Wood Material Science & Engineering 14(2): 81-87. https://doi.org/10.1080/17480272.2017.1387174
Vries, P.De; Gard, W.F. 2008. Determination of characteristic strength values for Dutch larch round timber. COST E53 Conference proceedings “End user’s needs for wood material and products” (pp. 261- 270). Delft University of Technology. https://research.tudelft.nl/en/publications/determination-of-characteris-tic-strength-values-for-dutch-larch-r
Wang, X.; Ross, R.J.; Mattson, J.A.; Erickson, J.R.; Forsman, J.W.; Geske, E.A.; Wehr, M.A. 2001. Several Nondestructive Evaluation Techniques for Assessing Stiffness and MOE of Small- Diameter Logs. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, WI: U.S. https://www.fpl.fs.usda.gov/documnts/fplrp/fplrp600.pdf
Wang, X.; Ross, R.J.; Mattson, J.A.; Erickson, J.R.; Forsman, J.W.; Geske, E.A.; Wehr, M.A. 2002. Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. Forest Products Journal 52(2): 79-85. https://www.researchgate.net/publication/291156177
Wang, X.; Verrill, S.; Lowell, E.; Ross, R. J.; Herian, V.L. 2013. Acoustic sorting models for improved log segregation. Wood and Fiber Science 45(4): 343-352. https://wfs.swst.org/index.php/wfs/article/view/1587

Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.