Preliminary study of Acacia dealbata logs for use in construction: Visual characterization and non-destructive testing

Authors

  • Manuel Suazo Uribe Universidad del Bío-Bío. Department of Construction Science. Concepción, Chile. https://orcid.org/0009-0004-5764-615X
  • Alexander Opazo Vega Universidad del Bío-Bío. Department of Civil and Environmental Engineering. Concepción, Chile. https://orcid.org/0000-0001-9059-8242
  • Claudio Montero Universidad del Bío-Bío. Laboratory of Wood Design and Technology. Concepción, Chile. https://orcid.org/0000-0001-7176-1892
  • Dante Marranzini University of Naples Federico II. Department of Structures for Engineering and Architecture. Naples, Italy.
  • Beatrice Faggiano University of Naples Federico II. Department of Structures for Engineering and Architecture. Naples, Italy.
  • José Luis Louzada University of Trás-os-Montes and Alto Douro. Departamento Florestal. Quinta de Prados. CITAB, Vila Real, Portugal. https://orcid.org/0000-0002-0991-1711
  • Jorge Branco University of Minho. Department of Civil Engineering. ISISE. Guimarães, Portugal. https://orcid.org/0000-0002-3976-0360

DOI:

https://doi.org/10.22320/s0718221x/2025.23

Keywords:

Acacia dealbata, acoustic testing, dynamic modulus of elasticity, small-diameter logs

Abstract

This study provides a preliminary mechanical characterization of minimally processed Acacia dealbata logs to assess their potential valorisation as a by-product of invasive species management. A total of 45 logs (90–143 mm diameter) from two harvest seasons groups, spring (17 logs, 2.0 m) and winter (28 logs, 2.4 m), were visually selected and evaluated for dynamic modulus of elasticity using longitudinal stress wave and transverse vibration tests. Testing was conducted in two moisture content states: air-dried (> 12%) and kiln-dried (≈ 12%). Significant differences between the two groups necessitated separate analyses and suggested a relationship between harvesting season and physical-mechanical properties. Although dynamic properties increased post-kiln drying, initial dynamic modulus of elasticity values were lower due to elevated initial moisture content. Visual characteristics exhibited weak correlations with dynamic properties, whereas high correlations were observed between adjusted dynamic modulus of elasticity values for both moisture states (r > 0,90 for longitudinal stress wave; r > 0,70 for transverse vibration). Adjusted dynamic modulus of elasticity values (18,29/14,00 GPa for longitudinal stress wave; 16,32/12,69 GPa for transverse vibration) were comparable to prior studies and support a potential classification of Acacia dealbata (mimosa) logs for structural applications.

Downloads

Author Biographies

Manuel Suazo Uribe, Universidad del Bío-Bío. Department of Construction Science. Concepción, Chile.

Biography

Alexander Opazo Vega, Universidad del Bío-Bío. Department of Civil and Environmental Engineering. Concepción, Chile.

Biography

Claudio Montero, Universidad del Bío-Bío. Laboratory of Wood Design and Technology. Concepción, Chile.

Biography

Dante Marranzini, University of Naples Federico II. Department of Structures for Engineering and Architecture. Naples, Italy.

Biography

Beatrice Faggiano, University of Naples Federico II. Department of Structures for Engineering and Architecture. Naples, Italy.

Biography

José Luis Louzada, University of Trás-os-Montes and Alto Douro. Departamento Florestal. Quinta de Prados. CITAB, Vila Real, Portugal.

Biography

Jorge Branco, University of Minho. Department of Civil Engineering. ISISE. Guimarães, Portugal.

Biography

References

ASTM. 2017. Standard Test Methods of Static Tests of Wood Poles. ASTM D1036-99. ASTM. West Conshohocken, PA, USA

Bukauskas, A.; Mayencourt, P.; Shepherd, P.; Sharma, B.; Mueller, C.; Walker, P.; Bregulla, J. 2019. Whole timber construction: A state of the art review. Construction and Building Materials 213: 748-769. https://doi.org/10.1016/j.conbuildmat.2019.03.043

Carreira, M.; Dias, A.; de Alcântara, P. 2017. Nondestructive Evaluation of Corymbia citriodora Logs by Means of the Free Transverse Vibration Test. Journal of Nondestructive Evaluation 36(2): 2-8. https://doi.org/10.1007/s10921-017-0401-0

Chahal, A.; Ciolkosz, D.; Puri, V.; Liu, J.; Jacobson, M. 2020. Factors affecting wood-bark adhesion for debarking of shrub willow. Biosystems Engineering 196: 202-209. https://doi.org/10.1016/j.biosyste-mseng.2020.05.019

Chan, J.; Walker, J.; Raymond, C. 2011. Effects of moisture content and temperature on acoustic velocity and dynamic MOE of radiata pine sapwood boards. Wood Science and Technology 45(4): 609-626. https://doi.org/10.1007/s00226-010-0350-6

Correia, M.; Castro, S.; Ferrero, V.; Crisóstomo, J.; Rodríguez-Echeverría, S. 2014. Reproductive biology and success of invasive Australian acacias in Portugal. Botanical Journal of the Linnean Society 174(4): 574-588. https://doi.org/10.1111/boj.12155

Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. 2015. Methods to determine wood moisture content and their applicability in monitoring concepts. Journal of Civil Structural Health Monitoring 5(2): 115-127. https://doi.org/10.1007/s13349-014-0082-7

Dimou, V.; Kaziolas, D.N.; Zygomalas, I.; Avtzis, N. 2017. Influence of biotic factors on the mechanical properties of wood, taking into account the time of harvesting. Wood Material Science & Engineering 12(3): 140-148. https://doi.org/10.1080/17480272.2015.1063004

EN. 2003. Structural round timber - Test methods. EN 14251-2003. CEN.

EN. 2003. Structural timber - Strength classes. EN 338-2003. CEN.

EN. 2016. Structural timber - Determination of characteristic values of mechanical properties and density. EN 384-2016. CEN.

Feng, X.; Wang, X.; Thomas, E.; Liu, Y.; Brashaw, B.; Ross, R. 2018. Defect detection and quality assessment of hardwood logs: Part 2 - Combined acoustic and laser scanning system. Wood and Fiber Science 50(3): 310-322. https://doi.org/10.22382/wfs-2018-030

Fuentes-Ramírez, A.; Pauchard, A.; Cavieres, L.; García, R. 2011. Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. Forest Ecology and Management 261(6): 1003-1009. https://doi.org/10.1016/j.foreco.2010.12.018

Green, D. W.; Evans, J. W.; Murphy, J. F.; Hatfield, C. A.; Gorman, T. M. 2005. Mechanical grading of 6-inch-diameter lodgepole pine logs for the travelers’ rest and rattlesnake creek bridges. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, WI: U.S. https://doi.org/10.2737/FPL-RN-297

ISO. 2014. Physical and Mechanical Properties of Wood -Test Methods for Small Clear Wood Specimen Part 1: Determination of Moisture Content for Physical and Mechanical Tests. ISO 13061-1. ISO.

Larson, D.; Mirth, R.; Wolfe, R. 2004. Evaluation of small-diameter ponderosa pine logs in bending. Forest Products Laboratory 54(12): 52-58. https://www.fpl.fs.usda.gov/documnts/pdf2004/fpl_2004_lar-son001.pdf

Llana, D.; Short, I.; Harte, A. 2020. Use of non-destructive test methods on Irish hardwood standing trees and small-diameter round timber for prediction of mechanical properties. Annals of Forest Science logo Annals of Forest Science 77(3). https://doi.org/10.1007/s13595-020-00957-x

Lorenzo, P.; Morais, M.C. 2023. Strategies for the Management of Aggressive Invasive Plant Species. Plants 12. e2482. https://doi.org/10.3390/plants12132482

Martins, C.; Monteiro, S.; Knapic, S.; Dias, A. 2020. Assessment of Bending Properties of Sawn and Glulam Blackwood in Portugal. Forests 11. e418. https://doi.org/10.3390/f11040418

Merz, K.; Niemann, A.; Torno, S. 2021. Building with hardwood, Innovation through an almost forgotten building material. DETAIL Business information GmbH, Munich. Germany.

Monteiro, A.; Gonçalves, J.; Fernandes, R.; Alves, S.; Marcos, B.; Lucas, R.; Teodoro, A.; Honrado, J. 2017. Estimating invasion success by non-native trees in a national park combining worldview-2 very high resolution satellite data and species distribution models. Diversity 9(1). e6. https://doi.org/10.3390/d9010006

Montero, M.J.; de la Mata, J.; Esteban, M.; Hermoso, E. 2015. Influence of moisture content on the wave velocity to estimate the mechanical properties of large cross-section pieces for structural use of scots pine from Spain. Maderas. Ciencia y Tecnología 17(2): 407-420. https://doi.org/10.4067/S0718-221X2015005000038

Möttönen, V.; Heräjärvi, H.; Koivunen, H.; Lindblad, J. 2004. Influence of felling season, drying method and within-tree location on the Brinell hardness and equilibrium moisture content of wood from 27-3-year-old Betula pendula. Scandinavian Journal of Forest Research 19(3): 241-249. https://doi.org/10.1080/02827580410029327

Mukaka, M.M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal 24(3): 69-71. https://pubmed.ncbi.nlm.nih.gov/23638278/

Nunes, L.J.R.; Meireles, C.I.R.; Gomes, C.J.P.; Ribeiro, N.M.C.A. 2022. Acacia dealbata Link. Above ground Biomass Assessment: Sustainability of Control and Eradication Actions to Reduce Rural Fires Risk. Fire 5(1). e7. https://doi.org/10.3390/FIRE5010007

Omonte, M.; Valenzuela-Hurtado, L. 2020. Relationship between acoustic wave velocity and different characteristics of wood in Eucalyptus nitens trees with sawing dimensions. Maderas. Ciencia y Tecnología 22(4): 559-568. https://doi.org/10.4067/S0718-221X2020005000414

Opazo-Vega, A.; Rosales, V.; Oyarzo-Vera, C. 2021. Non-Destructive Assesment of the Dynamic Elasticity Modulus of Eucalyptus nitens Timber Boards. Materials 14(2). e269. https://doi.org/10.3390/ma14020269

Papandrea, S.F.; Cataldo, M.F.; Bernardi, B.; Zimbalatti, G.; Proto, A.R. 2022. The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs. Forests 13(8). https://doi.org/10.3390/f13081273

Pinilla, J.C.; Vásquez, L.; Hernández, G.; Luengo, K.; Campos, R.; Elgueta, P.; Catalán, J.; Navarrete, M. 2019. Tensiones admisibles de la madera aserrada de aromo (Acacia dealbata D. Link.) clasificada visualmente. Informe Técnico N° 222. Instituto Forestal, Santiago, Chile. https://doi.org/10.52904/20.500.12220/29175

Rais, A.; Pretzsch, H.; Van De Kuilen, J.W.G. 2014. Roundwood pre-grading with longitudinal acoustic waves for production of structural boards. European Journal of Wood and Wood Products 72(1): 87-98. https://doi.org/10.1007/s00107-013-0757-5

Ranta-Maunus, A. 1999. Round small-diameter timber for construction: Final report of project FAIR CT 95-0091. VTT Technical Research Centre of Finland, Espoo, Finland. https://publications.vtt.fi/pdf/publica-tions/1999/P383.pdf

Santos, A.J.A.; Anjos, O.M.S.; Simões, R.M.S. 2006. Papermaking potential of Acacia dealba- ta and Acacia melanoxylon. Appita : Technology, Innovation, Manufacturing, Environment 59(1): 58-64. https://search.informit.org/doi/10.3316/informit.586621241335076

Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. 2019. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 10(9). e728. https://doi.org/10.3390/f10090728

Skatter, S.; Dyrseth, A.A. 1997. Vibration modes of logs measured by TV holography. Wood Fiber Sci 29(3): 228-238. https://wfs.swst.org/index.php/wfs/article/view/2045

Simpson, W.T.; Wang, X. 2004. Estimating air-drying times of small-diameter ponderosa pine and Douglas-fir logs. Forest Products Journal 54(12): 24-28. https://research.fs.usda.gov/treesearch/9265

Tomczak, K.; Tomczak, A.; Jelonek, T. 2020. Effect of natural drying methods on moisture content and mass change of scots pine roundwood. Forests 11(6):1-12. https://doi.org/10.3390/f11060668

Unterwieser, H.; Schickhofer, G. 2011. Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency- and ultrasonic runtime measurement. European Journal of Wood and Wood Products 69(2): 171-181. https://doi.org/10.1007/s00107-010-0417-y

Vega, A.; González, L.; Fernández, I.; González, P. 2019. Grading and mechanical characterization of small-diameter round chestnut (Castanea sativa Mill.) timber from thinning operations. Wood Material Science & Engineering 14(2): 81-87. https://doi.org/10.1080/17480272.2017.1387174

Vries, P.De; Gard, W.F. 2008. Determination of characteristic strength values for Dutch larch round timber. COST E53 Conference proceedings “End user’s needs for wood material and products” (pp. 261- 270). Delft University of Technology. https://research.tudelft.nl/en/publications/determination-of-characteris-tic-strength-values-for-dutch-larch-r

Wang, X.; Ross, R.J.; Mattson, J.A.; Erickson, J.R.; Forsman, J.W.; Geske, E.A.; Wehr, M.A. 2001. Several Nondestructive Evaluation Techniques for Assessing Stiffness and MOE of Small- Diameter Logs. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, WI: U.S. https://www.fpl.fs.usda.gov/documnts/fplrp/fplrp600.pdf

Wang, X.; Ross, R.J.; Mattson, J.A.; Erickson, J.R.; Forsman, J.W.; Geske, E.A.; Wehr, M.A. 2002. Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. Forest Products Journal 52(2): 79-85. https://www.researchgate.net/publication/291156177

Wang, X.; Verrill, S.; Lowell, E.; Ross, R. J.; Herian, V.L. 2013. Acoustic sorting models for improved log segregation. Wood and Fiber Science 45(4): 343-352. https://wfs.swst.org/index.php/wfs/article/view/1587

Downloads

Published

2025-04-03

How to Cite

Suazo Uribe, M. ., Opazo Vega, A. ., Montero, C. ., Marranzini, D. ., Faggiano, B. ., Louzada, J. L., & Branco, J. (2025). Preliminary study of Acacia dealbata logs for use in construction: Visual characterization and non-destructive testing. Maderas. Ciencia Y Tecnología, 27, e2325. https://doi.org/10.22320/s0718221x/2025.23

Issue

Section

Article