Physical and mechanical characterization of Mimosa tenuiflora wood from the caatinga for structural applications in construction

Authors

  • Maria de Lourdes Xavier de França Neta Alves Federal University of Rio Grande do Norte (UFRN). Department of Civil and Environmental Engineering. Natal, Brazil. https://orcid.org/0000-0002-4736-857X
  • Kleber Cavalcanti Cabral Federal University of Rio Grande do Norte (UFRN). Department of Civil and Environmental Engineering. Natal https://orcid.org/0000-0001-7502-3002
  • Edna Pinto Federal University of Rio Grande do Norte (UFRN). Department of Architectura. Natal, Brazil. https://orcid.org/0000-0002-2863-385X
  • Rejane Costa Alves Federal University of Espírito Santo (UFES). Department of Forestry and Wood Sciences. Alegre
  • Rosimeire Cavalcante dos Santos Federal University of Rio Grande do Norte (UFRN). Specialized Unit in Agricultural Sciences. Macaíba

DOI:

https://doi.org/10.22320/s0718221x/2025.33

Keywords:

Dimensional stability, Forest product utilization, Mimosa tenuiflora, Thermal conductivity, Tropical hardwood, Wood density

Abstract

The construction industry has been seeking materials that have a lower impact on the built environment. For this reason, wood has become an attractive option due to its natural and renewable properties. In the Northeast region of Brazil, the Caatinga biome stands out for its biodiversity as the only entirely national biome. However, the physical and mechanical properties of local tree species are poorly investigated, limiting potential uses as construction material. Therefore, this study aims to characterize the jurema preta Mimosa tenuiflora (jurema preta) species, native to the Caatinga biome, and indicate potential uses in civil construction. To this end, physical tests were conducted to determine moisture content, basic density, bulk density, dimensional stability, thermal conductivity; mechanical tests for parallel-to-grain compression, parallel and perpendicular shear, parallel and perpendicular tension, Janka hardness parallel and perpendicular, and static bending were performed. The Shapiro-Wilk test and Pearson correlation were used between physical and mechanical properties. The results classify the wood in the D20 strength class, with mechanical properties that meet the standards required for civil construction, covering both light and heavy indoor applications.

Downloads

Download data is not yet available.

Author Biographies

Maria de Lourdes Xavier de França Neta Alves, Federal University of Rio Grande do Norte (UFRN). Department of Civil and Environmental Engineering. Natal, Brazil.

Biography

Kleber Cavalcanti Cabral, Federal University of Rio Grande do Norte (UFRN). Department of Civil and Environmental Engineering. Natal

Biography

Edna Pinto, Federal University of Rio Grande do Norte (UFRN). Department of Architectura. Natal, Brazil.

Biography

Rejane Costa Alves, Federal University of Espírito Santo (UFES). Department of Forestry and Wood Sciences. Alegre

Biography

Rosimeire Cavalcante dos Santos, Federal University of Rio Grande do Norte (UFRN). Specialized Unit in Agricultural Sciences. Macaíba

Biography

References

ABNT. 2022. Projeto de estruturas de madeira – Parte 2: Métodos de ensaio para classificação visual e mecânica de peças estruturais de madeira. ABNT NBR 7190-2. ABNT: Rio de Janeiro, Brasil.

Aquino, V.B.M.; Freitas, M.V.P.; Vasconcelos, C.Q.; Almeida, J.P.B.; Arroyo, F.N.; Arriaga, F.; Wang, X.; Íñiguez-González, G.; Llana, D.F.; Esteban, M.; Niemz, P. Mechanical Properties of Wood: A Review. Forests 14(6). e1202. https://doi.org/10.3390/f14061202 DOI: https://doi.org/10.3390/f14061202

Rodrigues, E.F.C.; Christoforo, A.L.; Almeida, D.H.; Silva, S.A.M.; Silva, D.A.L.; Pinheiro, R.V.; Rocco Lahr, F.A. 2021. Physical and mechanical characterization of planchonella pachycarpa wood species for use in structural purpose. Wood Research 66(2): 267-276. http://dx.doi.org/10.37763/wr.1336-4561/66.2.267276 DOI: https://doi.org/10.37763/wr.1336-4561/66.2.267276

Araújo, H.J.B. 2007. Realações funcionais entre propriedades físicas e mecânicas de madeiras tropicais brasileiras. Floresta 37(3): 399-416. http://dx.doi.org/10.5380/rf.v37i3.9937 DOI: https://doi.org/10.5380/rf.v37i3.9937

Batista, F.G.; Melo, R.R.; Medeiros, D.T.; Oliveira, A.G.S.; Freitas, C.B.A.; Silva, E.D.G; Pimenta, A.S. 2020. Longitudinal variation of wood quality in the five forest species from Caatinga. Revista Brasileira de Ciências Agrárias 15(4): 1-9. https://doi.org/10.5039/agraria.v15i4a8572 DOI: https://doi.org/10.5039/agraria.v15i4a8572

Brasil. 2009. Ministério do Meio Ambiente. Instrução Normativa nº 1, de 25 de junho de 2009. Dispõe so Normative Instructionbre procedimentos para o manejo florestal sustentável e produção de madeira em florestas nativas. Diário Oficial da União: seção 1, Brasília, DF, 26 jun. 2009.

Calil-Junior, C.; Larh, F.A.R.; Dias, A.A. 2003. Dimensionamento de elementos estruturais de madeira. 1st ed. Manole: Barueri, SP, Brasil.

Carneiro, A.C.O.; Santos, R.C.; Castro, R.V.; Castro, A.F.N.M.; Pimenta, A.S.; Pinto, E.M.; Alves, I.C.N. 2013. Study of the thermal decomposition of eight wood species from Seridó region, Rio Grande do Norte. Revista Arvore 37(6): 1153-1163. https://doi.org/10.1590/S0100-67622013000600017 DOI: https://doi.org/10.1590/S0100-67622013000600017

Carvalho, A.C. 2018. Energy potential of wood of forest species in area under sustainable management, after rapid cutting, in Rio Grande do Norte. Dissertação de Mestrado. Universidade Federal do Rio Grande do Norte. https://repositorio.ufrn.br/handle/123456789/26580

Crafford, P.L.; Wessels, C.B.; Blumentritt, M. 2018. Sustainability and wood constructions: a review of green building rating systems and life-cycle assessment methods from a South African and developing world perspective. Advances in Building Energy Research 15(1): 67-68. https://doi.org/10.1080/17512549.2018.1528884 DOI: https://doi.org/10.1080/17512549.2018.1528884

Farias, D.T; Melo, R.R. 2020. Propriedades físicas da madeira de cinco espécies nativas da Caatinga. Advances in Forestry Science 7(3): 1147-1152. https://doi.org/10.34062/afs.v7i3.10333 DOI: https://doi.org/10.34062/afs.v7i3.10333

Ferreira, V.V.O. 2018. Characterization of forest species of caating for civil construction. Dissertação de Mestrado em Engenharia Civil. Universidade Federal do Rio Grande do Norte. 202p. https://repositorio.ufrn.br/handle/123456789/25541

Glover, J.; White, D.O.; Langrish, T.A.G. 2002. Wood versus concrete and steel in house construction: A life cycle assessment. Journal of Forestry 100(8): 34-41. https://academic.oup.com/jof/article/100/8/34/4613025 DOI: https://doi.org/10.1093/jof/100.8.34

IPT. 2013. Catálogo de madeiras brasileiras para construção civil. https://www.wwf.org.br/?40242/Catlogo-de-madeiras-brasileiras-para-a-construo-civil

ISO. 2014. Physical and Mechanical Properties of Wood - Test Methods for Small Clear Wood Specimens - Part 3: Determination of Ultimate Strength in Static Bending. ISO 13061-2. International Organization for Standardization.

Kana, S.K.; Biwolé, A.B.; Mejouyo Huisken, P.W.; Ganou Koungang, B.M.; Ngono Mvondo, R.R.; Tounkam, M.N.; Njeugna, E. 2024. Physical and mechanical properties of two tropical wood (Detarium macrocarpum and Piptadeniastrum africanum) and their potential as substitutes to traditionally used wood in Cameroon. International Wood Products Journal 15(1): 5-19. https://doi.org/10.1177/20426445241233343. DOI: https://doi.org/10.1177/20426445241233343

Moreschi, J.C. 2014. Propriedades da Madeira. 4th ed. FUPEF: Curitiba, Brasil. 208p.

Moshtaghin, A.F.; Franke, S.; Keller, T.; Vassilopoulos, A.P. 2016. Experimental characterization of longitudinal mechanical properties of clear timber: Random spatial variability and size effects. Construction and Building Materials 120: 432-441. https://doi.org/10.1016/j.conbuildmat.2016.05.109 DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.109

Nahuz, M.A.R. 1974. Some aspects of the introduction of lesser known brazilian species to the european timber market 1974. Thesis (Magister in Scientiae). University College of North Wales. 243p.

Nascimento, C.S.; Cruz, I.A.; Nascimento, C.C; de Araujo, R.D.; Higuchi, N.; dos Santos, J. 2021. Tecnological properties of wood from small diameter in an area of forest exploitation of reduced impact in the tropical forest. European Journal of Forest Research 79: 1241-1251. https://doi.org/10.1007/s10342-023-01588-3 DOI: https://doi.org/10.1007/s10342-023-01588-3

Nascimento, M.; Almeida, D.H.; Almeida, T.H.; Christoforo, A.L.; Rocco Lahr, F.A. 2018. Physical and Mechanical Properties of Sabiá Wood (Mimosa caesalpiniaefolia Bentham.). Current Journal of Applied Science and Technology 25(4): 1-5. https://doi.org/10.9734/CJAST/2017/38747 DOI: https://doi.org/10.9734/CJAST/2017/38747

Nogueira, M.C.J.A. 1991. Indicações para o emprego de dezeseis especies de eucalipto na construção civil. Dissertação (Mestrado em Arquitetura e Urbanismo). Universidade de São Paulo. https://repositorio.usp.br/item/000733443

Nogueira, S.S.; Castro, V.G. 2021. Longitudinal variation in the physical properties of Mimosa tenuiflora Wood. Revista do Instituto Florestal 33(2): 150-155. http://dx.doi.org/10.24278/2178-5031.202133203 DOI: https://doi.org/10.24278/2178-5031.202133203

Nogueira, S.S.; Castro, V.G.; Araujo, P.C.D. 2021. Extractive influence on color and natural durability of Jurema-preta. Advances in Forestry Science 8(4): 1613-1620. https://doi.org/10.34062/afs.v8i4.12728 DOI: https://doi.org/10.34062/afs.v8i4.12728

Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; U-Shah, D.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; Allwood, J.; Dupree, P.; Linden, P.F.; Scherman, O. 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews 68(1): 333-359. http://dx.doi.org/10.1016/j.rser.2016.09.107 DOI: https://doi.org/10.1016/j.rser.2016.09.107

Rilatupa, J. 2021. Prospects of sustainable wood building architecture. IOP Conference Series: Earth and Environmental Science 878(1). e012017. https://doi.org/10.1088/1755-1315/878/1/012017 DOI: https://doi.org/10.1088/1755-1315/878/1/012017

Rocha, H.L.S.; Paes, J.B.; Miná, A.J.S.; Oliveira, E. 2015. Caracterización físico mecânica da madeira de jurema-preta (Mimosa tenuiflora) visando seu emprego na indústria moveleira. Revista Brasileira de Ciências Agrárias 10(2): 262-267. https://doi.org/10.5039/agraria.v10i2a3772 DOI: https://doi.org/10.5039/agraria.v10i2a3772

Rocco-Lahr, F.A.; Chahud, E.; Fernandes R.A.; Teixeira, R.S. 2010. Tropical woods: Influence of density in hardness parallel and normal to the grain for some Brazilian tropical tree species. Scientia Forestalis 38(86): 153-158.

Sampaio, E.V.S. 2010. Uso sustentável e conservación de los recursos florestais da caatinga. Caracteristicas e potencialidades. https://www.gov.br/florestal/pt-br/centrais-de-conteudo/publicacoes/publicacoes-diversas/Usosustentveleconservaodosrecursosflorestaisdacaatinga.pdf

Santos, C.P.S.; Santos, R.C.; Carvalho, A.J.E.; Castro, R.V.O.; Costa, S.E.L.; Lopes, L.I.; Pareyn, F.G.C.; Dias Júnior, A.F.; Trugilho, P.F.; Carvalho, N.F.O.; Magalhães, M.A. 2020. Energy stock in areas under forest management in the state of Rio Grande do Norte. Scientia Forestalis 48(126): 1-10. https://doi.org/10.18671/scifor.v48n126.06 DOI: https://doi.org/10.18671/scifor.v48n126.06

Sovaa, D.; Porojanb, M.; Bedeleanb, B.; Huminic, G. 2018. Effective thermal conductivity models applied to wood briquettes. International Journal of Thermal Sciences (124): 1-12. https://doi.org/10.1016/j.ijthermalsci.2017.09.020 DOI: https://doi.org/10.1016/j.ijthermalsci.2017.09.020

SUDAM. 1981. Instituto de Pesquisas Tecnológicas – IPT. Agrupamento de espécies tropicais da Amazônia por similaridad de características básicas y uso. Belém, Brasil.

Švajlenka, J.; Kozlovská, M. 2021. Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users. Sustainability 13(23): 1-16. https://doi.org/10.3390/su132312950 DOI: https://doi.org/10.3390/su132312950

Tariq, K.A.; Haroon, M.; Mughal, A.H.; Ali, S. 2022. Physical and mechanical characterization of structural wood used in pakistan. Wood Research 67(1): 134-146. https://doi.org/10.37763/wr.1336-4561/67.1.134146 DOI: https://doi.org/10.37763/wr.1336-4561/67.1.134146

Teixeira, J.N.; Wolenski, A.R.V.; Aquino, V.B.M.; Hallak, T.; Silva, D.A.; Campos, C.I.; Mello, S.A.; Rocco, F.A.; Christoforo, A.L. 2021. Influence of provenance on physical and mechanical properties of Angelim-pedra (Hymenolobium petraeum Ducke.) wood species. European Journal of Wood and Wood Products 79: 1241-125. https://doi.org/10.1007/s00107-021-01692-4 DOI: https://doi.org/10.1007/s00107-021-01692-4

Zanatta, B.P.; Souza, L.V.C.; Oliveira, A.C.; Pereira, B.L.C.; Lengowski. 2021. Densidade e Resistência à compressão paralela às fibras da madeira de ocho especies amazônicas. In Encontro Brasileiro de Madeira e Estruturas de Madeira. EBRAMEM. Florianópolis, Brasil. https://soac.eesc.usp.br/index.php/ebramem/xviiebramem

A

Downloads

Published

2025-08-27

How to Cite

Xavier de França Neta Alves, M. de L. ., Cavalcanti Cabral, K. ., Pinto, E., Costa Alves, R. ., & Santos, R. C. dos . (2025). Physical and mechanical characterization of Mimosa tenuiflora wood from the caatinga for structural applications in construction. Maderas. Ciencia Y Tecnología, 27, e3325. https://doi.org/10.22320/s0718221x/2025.33

Issue

Section

Article

Most read articles by the same author(s)