Selection of Corymbia and Eucalyptus clones for firewood supply for thermal and electrical energy generation
DOI:
https://doi.org/10.22320/s0718221x/2025.35Keywords:
Biomass energy, Brazil, Cogeneration, Corymbia spp, Eucalyptus spp, energy density, wood biomass, wood fuelsAbstract
In Brazil, thermal and electric power generation from wood chips and agroforestry residues has expanded in regions favored by biomass availability and transportation logistics. Globally, wood stands out as a strategic renewable source, with potential for integration into cogeneration systems to enhance energy efficiency. The development and selection of new genotypes that meet the requirements for forest productivity and wood quality are important strategies for companies aiming to ensure a wood supply for bioenergy. The primary objective of this study was to investigate the differences in energy potential of new Corymbia and Eucalyptus clones intended for direct combustion in thermal and electrical energy cogeneration systems. We utilized the Scott-Knott hierarchical cluster analysis to classify the genetic materials based on the similarity of the evaluated properties. The study analyzed 16 genotypes of Corymbia spp., Eucalyptus spp., and their hybrids. In each treatment, corresponding to a genotype, three trees were harvested at 81 months of age with a medium diameter, spaced 6 m x 1,5 m totaling 48 sample units. We determined the basic and energy densities, elemental chemical composition, higher, lower, and useful heating values, and available energy. Among the Eucalyptus genus, clone 2 Eucalyptus cloeziana (gympie messmate) excelled in basic and energy densities, and useful heating value. Within the Corymbia hybrids and across all genetic materials evaluated, clone 4 exhibited the best performance in providing quality wood to meet the needs of bioenergy projects intended for thermal and electrical energy cogeneration systems. This superiority is attributed to its high basic and energy densities, available energy, and useful heating value, coupled with the best results in the combined analysis of average annual increase and wood dry weight increase.
Downloads
References
ABNT. 1986. Carvão vegetal: análise imediata. ABNT NBR 8112. ABNT: Rio de Janeiro, Brasil.
ANEEL. 2023. Sistema de Informações de Geração da ANEEL.
Barros, W.T.; Barreto Garcia, P.A.B.; Conceição Júnior, V.; Pereira, M.G.; Monroe, P.H.M.; Silva, M.S.; Nascimento, M.S.; Morais, J.L. 2024. Biomass Production and Nutritional Efficien-cy in Short Rotation Eucalypt Clone Plantations for Energy in North-East Brazil. Southern Fo-rests: a Journal of Forest Science 86(2): 102-114. https://doi.org/10.2989/20702620.2024.2325998. DOI: https://doi.org/10.2989/20702620.2024.2325998
Berbec, A.K.; Matyka, M. 2020. Planting density effects on grow rate, biometric parameters, and biomass calorific value of selected trees cultivated as SRC. Agriculture 10(12). e583. https://doi.org/10.3390/agriculture10120583 DOI: https://doi.org/10.3390/agriculture10120583
Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. 2015. An overview of renewable electric power capacity and progress in new technologies in the world. Renewable and Sustainable Energy Revi-ews 49: 323-334. https://doi.org/10.1016/j.rser.2015.04.148 DOI: https://doi.org/10.1016/j.rser.2015.04.148
Boiger, T.; Mair-Bauernfeind, C.; Asada, R.; Stern, T. 2024. Shifting wood between material and energy use: Modeling the effects of substitution. Journal of Industrial Ecology 28: 1198-1211. https://doi.org/10.1111/jiec.13530 DOI: https://doi.org/10.1111/jiec.13530
Cabral, C.P.T.; Vital, B.R.; Della Lucia, R.M.; Pimenta, A.S.; Soares, C.P.B.; Carvalho, A.M.M.L. 2006. Properties of osb manufactured with wood strands of Eucalyptus grandis, Eu-calyptus urophylla, Eucalyptus cloeziana and Pinus elliottii. Revista Árvore 30(4): 659-667. https://doi.org/10.1590/S0100-67622006000400020 DOI: https://doi.org/10.1590/S0100-67622006000400020
CEN. 2010. Solid biofuels – Determination of calorific value. EN 14918. CEN: Brussels, Belgium. 63p
Cruz, G.K.A.; Pio, N.S.; Iwakiri, S. 2019. Longitudinal and transverse variation in the physical properties of wood Red Tauari. Floresta e Ambiente 26. e20170336. https://doi.org/10.1590/2179-8087.033617 DOI: https://doi.org/10.1590/2179-8087.033617
Dias, T.A.C.; Lora, E.E.; Maya, D.M.Y.; Del Olmo, O.A. 2021. Global potential assessment of available land for bioenergy projects in 2050 within food security limits. Land Use Policy 105. e105346. https://doi.org/10.1016/j.landusepol.2021.105346 DOI: https://doi.org/10.1016/j.landusepol.2021.105346
EPE. 2022. Projeção da demanda de energia elétrica. Estudos de demanda. Nota técnica DEA 001/17. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes
Gonçalves, F.G.; Oliveira, J.T.S.; Della Lucia, R.M.; Nappo, M.E.; Sartório, R.C. 2009. Speci-fic density and dimensional variation of a Eucalyptus urophylla x Eucalyptus grandis clonal hybrid. Revista Árvore 33(2): 277-288. https://doi.org/10.1590/S0100-67622009000200009 DOI: https://doi.org/10.1590/S0100-67622009000200009
Gyamfi, B.A.; Ozturk, I., Bein; M.A; Bekun; F.V. 2021. An investigation into the anthropogenic effect of biomass energy utilization and economic sustainability on environmental degradation in E7 economies. Biofuels, Bioproducts and Biorefining 15: 840-851. https://doi.org/10.1002/bbb.2206 DOI: https://doi.org/10.1002/bbb.2206
IBA. 2023. Annual Report 2023. IBA: São Paulo, Brasil. https://www.iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2023-r.pdf
Jesus, M.S.; Costa, L.J.; Ferreira, J.C.; Freitas, F.P.; Santos, L.C.; Rocha, M.F.V. 2017. Ener-gy characterization of different species of Eucalyptus. Floresta 47(1): 11-16. http://dx.doi.org/10.5380/rf.v47i1.48418 DOI: https://doi.org/10.5380/rf.v47i1.48418
Loureiro, B.A.; Vieira, T.A.S.; Costa, L.J.; Silva, A.B.; Assis, M.R.; Trugilho, P.F. 2019. Se-lection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas. Ciencia y Tecnología 21(4): 619-630. http://dx.doi.org/10.4067/S0718-221X2019005000417 DOI: https://doi.org/10.4067/S0718-221X2019005000417
Massuque, J.; Manjate, M.J.; Santos, E.V.; Matavel, C.E.; Protasio, T.P.; Hein, P.R.G.; Tru-gilho, P.F. 2024. Combustion and energy performance of non-commercial Corymbia and Eucalyp-tus wood for use in cogeneration systems in Brazil. Energy 360. e100004. https://doi.org/10.1016/j.energ.2024.100004 DOI: https://doi.org/10.1016/j.energ.2024.100004
Massuque, J.; Sanchez, J.Y.S.C.; Loureiro, B.A.; Setter, C.; Lima, M.D.; da Silva, P.H, Prota-sio, T. de P.; Hein, P.R.; Trugilho, P.F. 2023. Evaluating the Potential of Non-commercial Eu-calyptus spp. and Corymbia spp. for Bioenergy in Brazil. BioEnergy Research 16: 1592-1603. https://doi.org/10.1007/s12155-022-10502-5 DOI: https://doi.org/10.1007/s12155-022-10502-5
Miranda, M.A.S.; Ribeiro, G.B.D.; Valverde, S.R.; Isbaex, C. 2017. Eucalyptus sp. woodchip potential for industrial thermal energy production. Revista Árvore 41(6):1-8. https://doi.org/10.1590/1806-90882017000600004 DOI: https://doi.org/10.1590/1806-90882017000600004
Paes, J.B.; Brocco, V.F.; Moulin, J.C.; Motta, J.P.; Alves, R.C. 2015. Effects of extractives and density on natural resistance of woods to termite Nasutitermes corniger. Cerne 21(4): 569-578. https://doi.org/10.1590/01047760201521041849 DOI: https://doi.org/10.1590/01047760201521041849
Paula, L.R.; Trugilho, P.F.; Napoli, A.; Bianchi, M.L. 2011. Characterization of residues from plant biomass for use in energy generation. Cerne 17(2): 237-246. https://doi.org/10.1590/S0104-77602011000200012 DOI: https://doi.org/10.1590/S0104-77602011000200012
Pereira, J.C.D.; Sturion, J.A.; Higa, A.R.; Higa, R.C.V.; Shimizu, J.Y. 2000. Características da madeira de algumas espécies de eucalipto plantadas no Brasil. Embrapa Florestas. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/94756/1/doc38.pdf
Qing, Y.; Liao, Y.; Liu, J.; Tian, C.; Xu, H.; Wu, Y. 2021. Research progress of wood-derived energy storage materials. Journal of Forestry Engineering 6(5): 1-13. https://doi.org/10.13360/j.issn.2096-1359.202012046
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. https://www.r-project.org/
Ribeiro, G.B.D.; Magalhaes, M.A.; Batista, F.R.S; Miranda, M.A.S.; Valverde, S.R.; Carnei-ro, A.C.O. 2021. Evaluation of Eucalyptus woodchip utilization as fuel for thermal power plants. Maderas. Ciencia y Tecnología 23(29). e29. https://doi.org/10.4067/s0718-221x2021000100429 DOI: https://doi.org/10.4067/S0718-221X2021000100429
Sabatti, M.; Fabbrini, F.; Harfouche, A.; Beritognolo, I; Mareschi, L.; Carlini, M.; Scaras-cia-Mugnozza, G. 2014. Evaluation of biomass production potential and heating value of hybrid poplar genotypes in a short-rotation culture in Italy. Industrial Crops and Products 61: 62-73.https://doi.org/10.1016/j.indcrop.2014.06.043 DOI: https://doi.org/10.1016/j.indcrop.2014.06.043
Siarudin, M.; Awang, SA.; Sadono, R.; Suryanto, P. 2023. Renewable energy from secondary wood products contributes to local green development: the case of small-scale privately owned forests in Ciamis Regency, Indonesia. Energy, Sustainability and Society 13(4): 1-19. https://doi.org/10.1186/s13705-023-00383-7 DOI: https://doi.org/10.1186/s13705-023-00383-7
Silva, M.F.; Lima, P.A.F.; Novaes, E.; Sette Jr., C.R.; Vale, A.T. 2022. Wood energy quality of Eucalyptus spp. clones established under different soil types in the Brazilian Cerrado. Canadian Journal of Forest Research 52(5): 743-750. https://doi.org/10.1139/cjfr-2021-0234 DOI: https://doi.org/10.1139/cjfr-2021-0234
TAPPI. 2001. Tappi Standard Methods TAPPI 257 CM-85.
Toklu, E. 2017. Biomass energy potential and utilization in Turkey. Renewable Energy 107: 235-244. https://doi.org/10.1016/j.renene.2017.02.008 DOI: https://doi.org/10.1016/j.renene.2017.02.008
Vieira, T.A.; Trugilho, P.F.; Carabineiro, S.A.; Zanuncio, A.J.V.; Carvalho, A.G.; Branco-Vieira, M. 2023. Impact of Chemical Composition on Eucalyptus Wood Clones for Sustainable Energy Production. Forests 14(11): e2240. https://doi.org/10.3390/f14112240 DOI: https://doi.org/10.3390/f14112240
Vital, B.R. 1984. Métodos de determinação da densidade da madeira. Sociedade de Investigações Florestais. https://www.eucalyptus.com.br/artigos/outros/1984Metodos_determinacao_densidade.pdf
Wu, W.; Hasegawa, T.; Ohashi, H.; Hanasaki, N.; Liu, J.; Matsui, T.; Fujimori, S.; Masui, T.; Takahashi, K. 2019. Global advanced bioenergy potential under environmental protection policies and societal transformation measures. Global Change Biology Bioenergy 11(9): 1041-1055. https://doi.org/10.1111/gcbb.12614 DOI: https://doi.org/10.1111/gcbb.12614
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.






























