Non-destructive estimation of wood density in standing Pinus brutia trees using the drilling resistance method: Results and insights

Authors

DOI:

https://doi.org/10.22320/s0718221x/2025.40

Keywords:

Drilling resistance method, non-destructive testing of wood, Pinus brutia, wood density, standing tree assessment

Abstract

In recent years, the use of drilling resistance method and devices which operate based on the method for non-destructive evaluation of wood has expanded, but research for density evaluation on standing trees remains limited. The study aimed to assess the effectiveness of the method through a device (IML RESI F500-S) in estimating wood density for standing Turkish red pine (Pinus brutia) trees. Increment core samples and measurement data were collected from stands of various ages and types in the Mediterranean region of Türkiye. Wood density data determined by x-ray densitometry were compared with estimates derived from charts of the device. The effect of drilling path direction was investigated on a group. Results showed that linear modelling by using the device data (obtained only by following the device manual) was moderately successful (r2≈0,62) in estimating density for only a sampling group (S1: Consisting of trees at different age, on different diameter etc.; range of density: 0,270 g/cm3; coefficient of variation:11 %). However, the other investigated group (S2), which had lower density variation due to less individual differentiation in terms of age, diameter etc., did not reveal a successful linear model. Solely the results for the subgroup 6th, showing lower density range than S1, demonstrated that even with lower density variation (cv≈7 %), standing tree wood density could be non-destructively estimated by a linear model (r2=0,72) using the device data. However, the data of the group obtained by using increment cores to ensure proper alignment of the drilling.   In this case accurate estimation required a drilling path perpendicular to annual rings and passing through the pith, but the current form of the device or such devices are unable to meet the requirement. The drilling resistance method has potential use in tree selection. To improve the device's accuracy, future research should focus on developing techniques or modifications of such device to ensure more consistent and reliable drilling paths for standing trees.

Downloads

Download data is not yet available.

Author Biography

Bilgin Icel, Çanakkale Onsekiz Mart University. Canakkale Technical Vocational School. Canakkale, Türkiye.

Biography

References

Acuña, L.; Basterra, L.A.; Casado, M.M.; López, G.; Cueto, G.R.; Relea, E.; Martínez, C.; González, A. 2011. Application of resistograph to obtain the density and to differentiate wood species. Materiales de Construcción 61(303): 451-464. https://doi.org/10.3989/mc.2010.57610 DOI: https://doi.org/10.3989/mc.2010.57610

Arbez, M. 1974. Distribution, ecology and variation of Pinus brutia in Turkey. FAO Forest Genetic Resources Information 3: 21-23. https://www.fao.org/4/e8705e/e8705e00.htm#TOC

Bouffier, L.; Charlot, C.; Raffin, A.; Rozenberg, P.; Kremer, A. 2008. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.). Annals of Forest Science 65. e106. https://doi.org/10.1051/forest:2007078 DOI: https://doi.org/10.1051/forest:2007078

Boydak, M. 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. – a review. Plant Ecology 171: 153-163. https://doi.org/10.1023/B:VEGE.0000029373.54545.d2 DOI: https://doi.org/10.1023/B:VEGE.0000029373.54545.d2

Bucur, V. 2003. Nondestructive characterization and imaging of wood. Springer-Verlag: Berlin Heidelberg, Germany. ISBN 9783540438403. https://doi.org/10.1007/978-3-662-08986-6 DOI: https://doi.org/10.1007/978-3-662-08986-6

Chantre, G.; Rozenberg, P. 1997. Can drill resistance profiles (Resistograph) lead to within-profile and within-ring density parameters in Douglas fir wood. In: Proceedings of CTIA-IUFRO International Wood Quality Workshop: Timber Management Toward Wood Quality and End-Product Value. CTIA-IUFRO: Quebec City, Canada. August 18-22, 1997.

Costello, L.R.; Quarles, S.L. 1999. Detection of wood decay in blue gum and elm: an evaluation of the resistograph and the portable drill. Arboriculture & Urban Forestry 25(6): 311-318. https://doi.org/10.48044/jauf.1999.041 DOI: https://doi.org/10.48044/jauf.1999.041

Duncan, R. 1989. An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrycarpus dacrydioides). New Zealand Natural Sciences 16: 31-37. https://core.ac.uk/download/pdf/326020562.pdf

Eckard, J.T. 2007. Rapid screening for solid wood quality traits in clones of loblolly pine (Pinus taeda L.) by indirect measurements. MSc Thesis. North Carolina State University: Raleigh, USA. http://www.lib.ncsu.edu/resolver/1840.16/451

Eckard, J.T.; Isik, F.; Bullock, B.; Li, B.; Gumpertz, M. 2010. Selection efficiency for solid wood traits in Pinus taeda using time-of-flight acoustic and micro-drill resistance methods. Forest Science 56(3): 233-241. https://doi.org/10.1093/forestscience/56.3.233 DOI: https://doi.org/10.1093/forestscience/56.3.233

Eckstein, D.; Sass, U. 1994. Bohrwiderstandsmessungen an Laubbäumen und ihre holzanatomische Interpretation (Measurements of drill resistance on broadleaved trees and their anatomical interpretation). Holz als Roh- und Werkstoff 52: 279-286. https://doi.org/10.1007/BF02621413 DOI: https://doi.org/10.1007/BF02621413

Faggiano, B.; Grippa, M.R.; Marzo, A.; Mazzolani, F.M. 2009. Combined non-destructive and destructive tests for the mechanical characterization of old structural timber elements. In: 3rd International Conference on Advances in Experimental Structural Engineering. University of California, Berkeley: San Francisco, USA. October 15-19, 2009. https://apps.peer.berkeley.edu/events/2009/icaese3/cd/files/pdf/FAGGIANO_etal_62.pdf

Gao, S.; Wang, X.; Wiemann, M.C.; Brashaw, B.K.; Ross, R.J.; Wang, L. 2017. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Annals of Forest Science 74. e27. https://doi.org/10.1007/s13595-017-0623-4 DOI: https://doi.org/10.1007/s13595-017-0623-4

Gantz, C.H. 2002. Evaluating the efficiency of the resistograph to estimate genetic parameters for wood density in two softwood and two hardwood species. MSc Thesis. North Carolina State University: Raleigh, USA. http://www.lib.ncsu.edu/resolver/1840.16/1554

Genç, M.; Guner, T.; Fakir, H. 1997. Afyon Çaldağı Kızılçam Meşcereleri (Brutia Pine Stands in Afyon Çaldağı). Orman Mühendisliği Dergisi 34(6): 7-15. https://www.academia.edu/5459606/Afyon_%C3%87al_Da%C4%9F%C4%B1_K%C4%B1z%C4%B1l%C3%A7am_Me%C5%9Fcereleri_Brutia_Pine_Stands_in_Afyon_%C3%87alda%C4%9F%C4%B1

Guller, B. 2010. Kızılçam’da (Pinus brutia Ten.) odun yoğunluğunun x-ray yoğunluk ölçer ile belirlenmesi (In Turkish with English abstract). Suleyman Demirel Üniversitesi Orman Fakültesi Dergisi A(2): 97-109. https://dergipark.org.tr/tr/download/article-file/195756

Guller, B.; Guller, A.; Kazaz, G. 2012. Is resistograph an appropriate tool for the annual ring measurement of Pinus brutia? In: NDE for Safety / DEFEKTOSKOPIE 2012. Czech Society for Nondestructive Testing: Seč u Chrudimi, Czech Republic. October 30 - November 1, 2012, pp. 89-94. https://www.ndt.net/article/defektoskopie2012/papers/89_p.pdf

Gwaze, D.; Stevenson, A. 2008. Genetic variation of wood density and its relationship with drill resistance in shortleaf pine. Southern Journal of Applied Forestry 32(3): 130-133. https://doi.org/10.1093/sjaf/32.3.130 DOI: https://doi.org/10.1093/sjaf/32.3.130

Haygreen, J.G.; Bowyer, J.L. 1996. Forest products and wood science. 3rd edition. Iowa State University Press: Ames, USA. ISBN 0813822564

Icel, B.; Guler, G.; Sutcu, A. 2015. Can resistograph be used as a practical tool for the annual ring measurement of pines. In: International Scientific Conference on Dendrochronology (EURODENDRO 2015). Akdeniz University: Antalya, Turkey. October 18-23, 2015, Abstract book pp. 63-64. https://cdn.iuc.edu.tr/FileHandler2.ashx?f=eurodendro2015_abstractbook.pdf

Icel, B.; Guler, G. 2016. Non-destructive determination of spruce lumber wood density using drilling resistance (Resistograph) method. Turkish Journal of Agriculture and Forestry 40(6): 910-917. https://doi.org/10.3906/tar-1606-76 DOI: https://doi.org/10.3906/tar-1606-76

Isik, F.; Li, B. 2003. Rapid assessment of wood density of live trees using the resistograph for selection in tree improvement programs. Canadian Journal of Forest Research 33: 2426-2435. https://doi.org/10.1139/x03-176 DOI: https://doi.org/10.1139/x03-176

Isik, F.; Li, B.; Goldfarb, B.; McKeand, S.E. 2008. Prediction of wood density breeding values of Pinus taeda elite parents from unbalanced data: A method for adjustment of site and age effects using common checklots. Annals of Forest Science 65: 406-413. https://doi.org/10.1051/forest:2008018 DOI: https://doi.org/10.1051/forest:2008018

Johnstone, D.; Ades, P.; Moore, G.M.; Smith, I.W. 2011. Using an IML-Resi drill to assess wood density in Eucalyptus globulus subsp. pseudoglobulus. Australian Forestry 74(3): 190-196. https://doi.org/10.1080/00049158.2011.10676362 DOI: https://doi.org/10.1080/00049158.2011.10676362

Kappel, R.; Mattheck, C. 2003. Inspection of timber construction by measuring drilling resistance using Resistograph F300-S. In: Structural Studies, Repairs and Maintenance of Heritage Architecture VIII. WIT Press: Southampton, UK, pp. 825-834. https://doi.org/10.2495/STR030801

Miller, S.J. 2006. The method of least squares. MSc Thesis. Williams College: Williamstown, USA. https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/MethodLeastSquares.pdf

Niemz, P.; Bues, C.T.; Herrmann, S. 2002. Die Eignung von Schallgeschwindigkeit und Bohrwiderstand zur Beurteilung von simulierten Defekten in Fichtenholz. Schweizerische Zeitschrift für Forstwesen 153(6): 201-209. https://doi.org/10.3188/szf.2002.0201 DOI: https://doi.org/10.3188/szf.2002.0201

Niemz, P.; Mannes, D. 2012. Non-destructive testing of wood and wood-based materials. Journal of Cultural Heritage 13(3): 26-34. https://doi.org/10.1016/j.culher.2012.04.001 DOI: https://doi.org/10.1016/j.culher.2012.04.001

Rinn, F.; Schweingruber, F.H.; Schär, E. 1996. RESISTOGRAPH and X-ray density charts of wood. Comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung 50(4): 303-311. https://doi.org/10.1515/hfsg.1996.50.4.303 DOI: https://doi.org/10.1515/hfsg.1996.50.4.303

Pirie, M.R.; Fowler, A.M.; Triggs, C.M. 2015. Assessing the accuracy of three commonly used pith offset methods applied to Agathis australis (Kauri) incremental cores. Dendrochronologia 36: 60-68. https://doi.org/10.1016/j.dendro.2015.10.003 DOI: https://doi.org/10.1016/j.dendro.2015.10.003

Rowell, R.M.; Konkol, P. 1987. Treatments that enhance physical properties of wood. Forest Products Laboratory: Madison, WI, USA. https://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr55.pdf DOI: https://doi.org/10.2737/FPL-GTR-55

Sharapov, E.; Wang, X.; Smirnova, E.; Wacker, J.P. 2018. Wear behavior of drill bits in wood drilling resistance measurements. Wood and Fiber Science 50(2): 154-166. https://doi.org/10.22382/wfs-2018-017 DOI: https://doi.org/10.22382/wfs-2018-017

Treacy, M.; Evertsen, J.; Dhubhain, A.N. 2000. A comparison of mechanical and physical wood properties of a range of Sitka spruce provenances. COFORD Project Report. COFORD: Dublin, Ireland. https://www.coford.ie/media/coford/content/publications/projectreports/comparison.pdf

Ukrainetz, N.K.; O’Neill, G.A. 2010. An analysis of sensitivities contributing measurement error to resistograph values. Canadian Journal of Forest Research 40(4): 806-811. https://doi.org/10.1139/X10-019 DOI: https://doi.org/10.1139/X10-019

Wang, S.Y.; Lin, C.J.; Chihu, M.C.; Chen, J.H.; Yung, T.H. 2005. Dynamic modulus of elasticity and bending properties of young Taiwania trees grown with different thinning and pruning treatments. Journal of Wood Science 51(1): 1-6. https://doi.org/10.1007/s10086-004-0622-6 DOI: https://doi.org/10.1007/s10086-004-0622-6

Wang, S.Y.; Chiu, C.M.; Lin, C.J. 2003. Application of the drilling resistance method for annual ring characteristics: evaluation of Taiwania cryptomerioides trees grown with different thinning and pruning treatments. Journal of Wood Science 49(2): 116-124. https://doi.org/10.1007/s100860300018 DOI: https://doi.org/10.1007/s100860300018

Wang, S.Y.; Chen, J.H.; Hsu, K.P.; Lin, C.J.; Jane, M.C. 2008. Ring characteristics and compressive strength of Japanese cedar trees grown under different silvicultural treatments. Wood and Fiber Science 40(3): 384-391. https://wfs.swst.org/index.php/wfs/article/view/112/112

Zobel, B.J. 1992. Silvicultural effects on wood properties. IPEF International 2: 31-38. https://www.ipef.br/PUBLICACOES/international/nr02cap05.pdf

Zobel, B.J.; Sprague, J.R. 1998. Juvenile wood in forest trees. Springer Series in Wood Science. Springer-Verlag: Berlin Heidelberg, Germany. ISBN 9783642721281. https://doi.org/10.1007/978-3-642-72126-7 DOI: https://doi.org/10.1007/978-3-642-72126-7

Downloads

Published

2025-12-01

How to Cite

Icel, B. (2025). Non-destructive estimation of wood density in standing Pinus brutia trees using the drilling resistance method: Results and insights. Maderas. Ciencia Y Tecnología, 27, e4025. https://doi.org/10.22320/s0718221x/2025.40

Issue

Section

Article