Sustentabilidad en el mercado virtual brasileño de las viviendas de madera procesada

Autores/as

DOI:

https://doi.org/10.22320/07190700.2023.13.01.02

Palabras clave:

industria de la construcción, estructuras de madera, estudios de mercado, sustentabilidad

Resumen

Las viviendas de madera procesada son sustentables y basadas en biorecursos, siendo una alternativa a la construcción tradicional de albañilería y acero y estudios recuentes han demostrado que este sector, en Brasil, cuenta con cientos de pequeñas y medianas empresas dedicadas a este tipo de vivienda. Este estudio exploratorio, a la vez que analizó esta población, evaluó los perfiles disponibles en Instagram®, observando sus estrategias de negocio y lo que revelan a sus clientes sobre los beneficios en cuando a sustentabilidad y asuntos relacionados a esta. Todos los perfiles corporativos disponibles fueron estudiados y se compiló una muestra significativa de alrededor del 80% de un sector, desde un mercado actualmente compuesto por más de 400 empresas. Sin embargo, alrededor del 70% de estas empresas brasileñas aún no exploran adecuadamente los temas de sustentabilidad de sus productos y servicios de viviendas de madera, lo que evidencia un escenario incipiente. Además, existe una clara oportunidad para aprovecharse de los argumentos publicados en sus perfiles de Instagram® como una estrategia de concientización afirmativa. Aunque se sugirieron algunas justificaciones para convencer a los clientes nacionales para considerar las viviendas de madera, este mercado virtual puede mejorar sustantivamente.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Victor Almeida-De Araujo, Universidad Federal de São Carlos, São Carlos, Brasil.

Doctor en Ciencias de los Recursos Forestales. Investigador-Doctor de Postdoctorado en Ingeniería Civil y Profesor Invitado de Posgrado en Ingeniería Civil.

Juliano Souza-Vasconcelos, Universidad Estatal de São Paulo, Botucatu, Brasil.

Doctor en Agronomía.
Investigador-Doctor eningeniería

Sheyla Mara Baptista-Serra, Universidad Federal de São Carlos, São Carlos, Brasil.

Doctora en Ingeniería de la Construcción Civil e Urbana.
Profesora-Doctora Asociada de Pregrado y Posgrado en Ingeniería Civil

André Luis Christoforo, Universidad Federal de São Carlos, São Carlos, Brasil.

Doctorado en Ingeniería de las Estructuras. Profesor-Doctor Adjunto de Pregrado y Posgrado en Ingeniería Civil

José Carlos Paliari, Universidad Federal de São Carlos, São Carlos, Brasil.

Doctor en Ingeniería Civil.
Profesor-Doctor Adjunto de Pregrado y Posgrado en Ingeniería Civil

Citas

AHMED, S. (2021). Evaluating the feasibility of mass timber as a mainstream building material in the US construction market: industry perception, cost competitiveness, and environmental performance analysis. [Doctoral thesis in Civil Engineering, Oregon State University]. Corvallis: OSU, 1-187.

BARTIK, A., BERTRAND, M., CULLEN, Z., GLAESER, E. L., LUCA, M. & STANTON, M. (2020). The impact of COVID-19 on small business outcomes and expectations. PNAS, 117(30), 17656-17666. DOI: https://doi.org/10.1073/pnas.200699111

BAUER, B., KOPPELHUBER, J., WALL, J. & HECK, D. (2017). Impact factors on the cost calculation for building services within the built environment. Procedia Engineering, 171, 294-301. DOI: https://doi.org/10.1016/j.proeng.2017.01.337

BURNARD, M., NYRUD, A., BYSHEIM, K., KUTNAR, A., VAHTIKARI, K. & HUGHES, M. (2017). Building material naturalness: perceptions from Finland, Norway and Slovenia. Indoor and Built Environment, 26(1), 92-107. DOI: https://doi.org/10.1177/1420326X15605162

CHANDRAGIRI, A., JEELANI, S., AKTHAR, S. & LINGESHWARAN, N. (2021). A study and identification of the time and cost overrun in the construction project. Materials Today: Proceedings, 47(15), 5426-5431. DOI: https://doi.org/10.1016/j.matpr.2021.06.268

CHEN, J., VULLIKANTI, A., SANTOS, J., VENKATRAMANAN, S., HOOPS, S., MORTVEIT, H., LEWIS, B., YOU, W., EUBANK, S., MARATHE, M., BARRETT, C. & MARATHE, A. (2021). Epidemiological and economic impact of COVID-19 in the US. Scientific Reports, 11, 20451. DOI: https://doi.org/10.1038/s41598-021-99712-z

DE ARAUJO, V., GUTIÉRREZ-AGUILAR, C., CORTEZ-BARBOSA, J., GAVA, M. & GARCIA, J. (2019). Disponibilidad de las técnicas constructivas de habitación en madera, en Brasil. Revista de Arquitectura, 21(1), 68-75. DOI: https://doi.org/10.14718/RevArq.2019.21.1.2014

DE ARAUJO, V., ŠVAJLENKA, J., VASCONCELOS, J., SANTOS, H., SERRA, S., ALMEIDA FILHO, F., PALIARI, J., LAHR, F. & CHRISTOFORO, A. (2022a). Is the timber construction sector prepared for e-commerce via Instagram®? A perspective from Brazil. Sustainability, 14(14), 8683. DOI: https://doi.org/10.3390/su14148683

DE ARAUJO, V., VASCONCELOS, J., GAVA, M., CHRISTOFORO, A., LAHR, F. & GARCIA, J. (2021a). What does Brazil know about the origin and uses of tree species employed in the housing sector? Perspectives on available species, origin and current challenges. International Forestry Review, 23(3), 392-404. DOI: https://doi.org/10.1505/146554821833992794

DE ARAUJO, V., VASCONCELOS, J., LAHR, F. & CHRISTOFORO, A. (2022b). Timber forest products: a way to intensify global bioeconomy from bio-materials. Acta Facultatis Xylologiae Zvolen, 64(1), 99-111. DOI: http://dx.doi.org/10.17423/afx.2022.64.1.09

DE ARAUJO, V., VASCONCELOS, J., BIAZZON, J., MORALES, E., CORTEZ, J., GAVA, M. & GARCIA, J. (2020a). Production and market of timber housing in Brazil. Pro Ligno, 16(1), 17-27. Retrieved from: https://www.proligno.ro/en/articles/2020/1/DE%20ARAUJO.pdf

DE ARAUJO, V., VASCONCELOS, J., CORTEZ-BARBOSA, J., MORALES, E., CHRISTOFORO, A., GAVA, M., LAHR, F. & GARCIA, J. (2020b). Wood consumption and fixations of carbon dioxide and carbon from timber housing techniques: A Brazilian panorama. Energy and Buildings, 216, 109960. DOI: https://doi.org/10.1016/j.enbuild.2020.109960

DE ARAUJO, V., VASCONCELOS, J., CORTEZ-BARBOSA, J., MORALES, E., GAVA, M., SAVI, A. & GARCIA, J. (2016). Wooden residential buildings – a sustainable approach. Bulletin of the Transilvania University of Brasov - Series II, 9(58), 53-62. Retrieved from: https://webbut.unitbv.ro/index.php/Series_II/article/view/816/748

DE ARAUJO, V., VASCONCELOS, J., MORALES, E., LAHR, F. & CHRISTOFORO, A. (2021b). Characterization of business poles of timber houses in Brazil. Mercator, 20(2), 1-15. Retrieved from: http://www.mercator.ufc.br/mercator/article/view/e20026

DOMLJAN, D. & JANKOVIC, L. (2022). Design of sustainable modular wooden booths inspired by revitalization of Croatian traditional construction and new user needs due to COVID-19 pandemic. Sustainability, 14(2), 720-742. DOI: https://doi.org/10.3390/su14020720

Egan Consulting. (2017). Annual survey of UK structural timber markets: market report 2016. Alloa: Structural Timber Association.

EGGER, D., MIGUEL, E., WARREN, S., SHENOY, A., COLLINS, E., KARLAN, D., PARKERSON, D., MOBARAK, A., FINK, G., UDRY, C., WALKER, M., HAUSHOFER, J., LARREBOURE, M., ATHEY, S., LOPEZ-PENA, P., BENHACHMI, S., HUMPHREYS, M., LOWE, L., MERIGGI, N., WABWIRE, A., DAVIS, C., PAPE, U., GRAFF, T., VOORS, M., NEKESA, C. & VERNOT, C. (2021). Falling living standards during the COVID-19 crisis: quantitative evidence from nine developing countries. Science Advances, 7(6), 1-12. DOI: https://doi.org/10.1126/sciadv.abe0997

FUJII, H. & MANAGI, S. (2013). Which industry is greener? An empirical study of nine industries in OECD countries. Energy Policy, 57, 381-388. DOI: https://doi.org/10.1016/j.enpol.2013.02.011

GARAY, R., PFENNIGER, F., CASTILLO, M. & FRITZ, C. (2021). Quality and sustainability indicators of the prefabricated wood housing industry - a Chilean case study. Sustainability, 13(15), 8523. https://doi.org/10.3390/su13158523

GARAY-MOENA, R., CASTILLO-SOTO, M., FRITZ-FUENTES, C. & ORTEGA, C. (2022). Desarrollo de un indicador integrado de sustentabilidad y seguridad estructural para el mercado de viviendas de madera aplicado a Chile central. Hábitat Sustentable, 12(1), 8-23. DOI: https://doi.org/10.22320/07190700.2022.12.01.01

GUSTAVSSON, L. & SATHRE, R. (2006). Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment, 41, 940-951. DOI: https://doi.org/10.1016/j.buildenv.2005.04.008

HAMMOND, G. & JONES, C. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers, 161(2), 87-98. DOI: https://doi.org/10.1680/ener.2008.161.2.87

HARRIS, R. & SOCRATOUS, M. (2013). Preface. Schober, K. (Ed.). Innovative timber composites - improving wood with other materials. COST Action FP1004. Bath: University of Bath.

HART, J. & POMPONI, F. (2020). More timber in construction: unanswered questions and future challenges. Sustainability, 12(8), 3473. DOI: https://doi.org/10.3390/su12083473

HEILMAYR, R., ECHEVERRÍA, C. & LAMBIN, E. (2020). Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nature Sustainability, 3, 701-709. DOI: https://doi.org/10.1038/s41893-020-0547-0

HERÄJÄRVI, H. (2019). Wooden buildings as carbon storages – Mitigation or oration? Wood Material Science & Engineering, 14(5), 291-297. DOI: https://doi.org/10.1080/17480272.2019.1635205

HIGHLEY, T. L. & SCHEFFER, T. (1989). Controlling decay in waterfront structures: evaluation, prevention, and remedial treatments. FPL-RP-494. Madison: FPL.

HØIBØ, O., HANSEN, E. & NYBAKK, E. (2015). Building material preferences with a focus on wood in urban housing: durability and environmental impacts. Canadian Journal of Forest Research, 45(11), 1617-1627. DOI: https://doi.org/10.1139/cjfr-2015-0123

HURMEKOSKI, E., JONSSON, R. & NORD, T. (2015). Context, drivers, and future potential for wood-frame multi-story construction in Europe. Technological Forecasting and Social Change, 99, 181-196. DOI: https://doi.org/10.1016/j.techfore.2015.07.002

IBÁ (2020). Relatório anual 2020. São Paulo: IBÁ.

IQBAL, M., AHMAD, N., WAQAS, M., ABRAR, M. (2021). COVID-19 pandemic and construction industry: Impacts, emerging construction safety practices, and proposed crisis management. Brazilian Journal of Operations & Production Management, 18(2), 1-17. DOI: https://doi.org/10.14488/BJOPM.2021.034

IVANOV, A. (2005). Revitalization of historic wooden housing using local entrepreneurs’

capacity (cases of towns of Gorodets, Russia and Eksjö, Sweden). [Master’s dissertation in Urban Management and Development, Lund University]. Lund: Lund University, 1-89.

KOPPELHUBER, J., BAUER, B., WALL, J. & HECK, D. (2017). Industrialized timber building systems for an increased market share – a holistic approach targeting construction management and building economics. Procedia Engineering, 171, 333-340. DOI: https://doi.org/10.1016/j.proeng.2017.01.341

LARSEN, J., SHEN, G., LINDHARD, S. & BRUNOE, T. (2016). Factors affecting schedule delay, cost overrun, and quality level in public construction projects. Journal of Management in Engineering, 32, 1-10. DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000391

Leite-Filho, A., Soares-Filho, B., Davis, J., Abrahão, G. & Börner, J. (2021). Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications, 12, 2591. DOI: https://doi.org/10.1038/s41467-021-22840-7

LIMA, M. (2017). Brasileiros são os que mais procuram por produtos com certificado florestal. Retrieved from: <https://www.correiobraziliense.com.br/app/noticia/economia/2017/11/03/internas_economia,638392/brasileiros-sao-os-que-mais-procuram-produtos-certificado-florestal.shtml>.

MALDONADO, M., ESQUIVEL, A. & CHAN, A. (2020). Calidad en el servicio en micronegocios del sector artesanal de madera en una comisaría de Mérida, México. Ingeniare, 28, 120-132. DOI: http://dx.doi.org/10.4067/S0718-33052020000100120

MBIE. (2021). Building and construction sector trends annual report 2021. Wellington: MBIE, 1-39.

MEIJUEIRO, D., LOPES, C., ALVES, R., SILVEIRA, B., GRACIOLI, C. & ROSSO, S. (2020). Certificação em manejo florestal e em cadeia de custódia no Brasil. Brazilian Journal of Development, 6(8), 57324-57340. DOI: https://doi.org/10.34117/bjdv6n8-223

MOORE, N. (2015). Timber utilisation statistics 2015. Alicante: Timbertrends.

MORGADO, L. & PEDRO, J. (2011). Caracterização da oferta de casas de madeira em Portugal: inquérito às empresas de projecto, fabrico, construção e comercialização. Relatório 118/2011 – NAU. Lisboa: LNEC., 1-173.

OLIVER, C., NASSAR, N., LIPPKE, B. & MCCARTER, J. (2014). Carbon, fossil fuel, and biodiversity mitigation with wood and forests. Journal of Sustainable Forestry, 33, 248-275. DOI: https://doi.org/10.1080/10549811.2013.839386

PEARSON, T., SWAILS, E. & BROWN, S. (2012). Wood product accounting and climate change mitigation projects involving tropical timber: Winrock international report to the international tropical timber organization. Report. Little Rock: Winrock International.

PINHEIRO, R., CASTRO, G., SILVA, H. & NUNES, J. (2011). Pesquisa de mercado. Rio de Janeiro: Editora FGV.

POMPONI, F., HART, J., AREHART, J. & D’AMICO, B. (2020). Buildings as a global carbon sink? A reality check on feasibility limits. One Earth, 3(2), 157-161. DOI: https://doi.org/10.1016/j.oneear.2020.07.018

RABELO, L., MAESTRI, M., AQUINO, M., BAUMANN, S. & BRÍGIDA, C. (2020). Cenário das árvores plantadas no Brasil. Biodiversidade, 19(3), 170-179. Retrieved from: https://periodicoscientificos.ufmt.br/ojs/index.php/biodiversidade/article/view/10825

RAMAGE, M., BURRIDGE, H., BUSSE-WICHER, M., FEREDAY, G., REYNOLDS, T., SHAH, D., WU, G., YU, L., FLEMING, P., DENSLEY-TINGLEY, D., ALLWOOD, J., DUPREE, P., LINDEN, P. & SCHERMAN, O. (2017). The wood from the trees: the use of timber in construction. Renewable and Sustainable Energy Reviews, 68(1), 333-359. DOI: https://doi.org/10.1016/j.rser.2016.09.107

Raosoft (2004). Raosoft Sample Size Calculator. Seattle: Raosoft. Retrieved from: http://www.raosoft.com/samplesize.html.

RATTNER, H. (1999). Sustentabilidade - uma visão humanista. Ambiente & Sociedade, 5, 233-240. DOI: https://doi.org/10.1590/S1414-753X1999000200020

RIBEIRO, M. (2020). A Brazilian forest community shows certified timber really does work. Retrieved from: https://news.mongabay.com/2020/07/a-brazilian-forest-community-shows-certified-timber-really-does-work/.

ROMERO, C., GUARIGUATA, M., PUTZ, F., SILLS, E., LIMA, G., PAPP, L., VOIGTLAENDER, M. & VIDAL, E. (2015). The context of natural forest management and FSC certification in Brazil. Bogor, Indonesia: CIFOR.

SENOUCI, A., ISMAIL, A. & ELDIN, N. (2016). Time delay and cost overrun in Qatari public construction projects. Procedia Engineering, 164, 368-375. DOI: https://doi.org/10.1016/j.proeng.2016.11.632

SHIGUE, E. (2018). Difusão da construção em madeira no Brasil: agentes, ações e produtos. [Doctoral thesis in Architecture, University of São Paulo]. São Carlos: USP, 1-237.

SINGH, R. (2010). Delays and cost overruns in infrastructure projects: extent, causes and remedies. Economic & Political Weekly, 45(21), 43-54. Retrieved from: https://www.jstor.org/stable/27807050

SVAJLENKA, J. & KOZLOVSKÁ, M. (2020a). Analysis of the energy balance of constructions based on wood during their use in connection with CO2 emissions. Energies, 13(18), 4843. DOI: https://doi.org/10.3390/en13184843

SVAJLENKA, J. & KOZLOVSKÁ, M. (2020b). Evaluation of the efficiency and sustainability of timber-based construction. Journal of Cleaner Production, 259, 120835. DOI: https://doi.org/10.1016/j.jclepro.2020.120835

SVAJLENKA, J. & KOZLOVSKÁ, M. (2018). Houses based on wood as an ecological and sustainable housing alternative - case study. Sustainability, 10(5), 1502. DOI: https://doi.org/10.3390/su10051502

VERSCHUUR, J., KOKS, E. & HALL, J. (2021). Global economic impacts of COVID-19 lockdown measures stand out in high-frequency shipping data. PLoS ONE, 16, 1-16. DOI: https://doi.org/10.1371/journal.pone.0248818

VIHOLAINEN, N., KYLKILAHTI, E., AUTIO, M., PÖYHÖNEN, J. & TOPPINEN, A. (2021). Bringing ecosystem thinking to sustainability-driven wooden construction business. Journal of Cleaner Production, 292, 126029. DOI: https://doi.org/10.1016/j.jclepro.2021.126029

WAHL, A. (Ed.). (2008). Wood market trends in Europe. SP-49. Trend 3. Vancouver: FPInnovations, 40.

WANG, L., TOPPINEN, A. & JUSLIN, H. (2014). Use of wood in green building: a study of expert perspectives from the UK. Journal of Cleaner Production, 65, 350-361. DOI: https://doi.org/10.1016/j.jclepro.2013.08.023

WARGULA, L., KUKLA, M., WIECZOREK, B. & KRAWIEC, P. (2022). Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms. Renewable Energy, 181, 630-639. DOI: https://doi.org/10.1016/j.renene.2021.09.039

WHERRY, G. & BUEHLMANN, U. (2014) Product life cycle of the manufactured home industry. BioResources, 9, 6652-6668. Retrieved from: https://bioresources.cnr.ncsu.edu/wp-content/uploads/2016/06/BioRes_09_4_6652_Wherry_Buehlmann_Product_Life_Cycle_Home_Industry_5443.pdf

YAZDI, M., ZAKARIA, R., MUSTAFFA, M., MAJID, M., ZIN, R., ISMAIL, M. & YAHYA, K. (2014). Desalination and Water Treatment, 52(19-21), 3631-3636. DOI: https://doi.org/10.1080/19443994.2013.854105

Publicado

2023-06-30

Cómo citar

Almeida-De Araujo, V., Souza-Vasconcelos, J., Baptista-Serra, S. M., Christoforo, A. L., & Paliari, J. C. (2023). Sustentabilidad en el mercado virtual brasileño de las viviendas de madera procesada. Hábitat Sustentable, 13(1), 20–29. https://doi.org/10.22320/07190700.2023.13.01.02

Número

Sección

Artículos