Propuesta metodológica para medir el deslumbramiento en ambientes interiores mediante cuatro rangos de apertura ocular

Autores/as

DOI:

https://doi.org/10.22320/07190700.2024.14.01.01

Palabras clave:

deslumbramiento, confort visual, indicadores oculares

Resumen

El desarrollo de modelos de deslumbramiento contribuye a una mejor evaluación del confort visual de los ocupantes en espacios interiores. Los indicadores oculares pueden ser una herramienta adecuada para evaluar el deslumbramiento de manera dinámica en climas soleados para evitar las molestias visuales. En este trabajo, se mide el grado de apertura ocular y se propone su medición en cuatro rangos (oclusión, semi-oclusión, semi-apertura y apertura) por medio de un eye-tracker. El objetivo de este trabajo fue evaluar de qué manera se relaciona el grado de apertura ocular con los niveles de iluminancia vertical (Ev) inferiores a 2484 lx (valor donde aparece la sensación de deslumbramiento molesto), así como determinar si la percepción subjetiva del deslumbramiento de las personas corresponde a los rangos de deslumbramientos propuestos por Wienold (2019). Estos parámetros se midieron en tres condiciones de deslumbramiento percibido (notable, perturbador e intolerable). Los resultados mostraron que la medición de apertura ocular en cuatro rangos, tiene el potencial de cuantificar de manera objetiva y dinámica la sensación de deslumbramiento en todos los escenarios evaluados y en cuanto a su relación con los valores de Ev de referencia, los valores percibidos como notable y perturbador, fueron inferiores a los valores de referencia, mientras que los valores percibidos como intolerable fueron coincidentes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Julieta Yamin-Garretón, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doctora en Medio Ambiente Visual e Iluminación eficiente
Investigadora del Instituto de Ambiente, Hábitat y Energía (INAHE)

Darío Jaime, Instituto de Ambiente, Hábitat y Energía (INAHE), Mendoza, Argentina

Licenciado en Energías Renovables
Personal de Apoyo - Programador

Maureen de Gastines, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doctora en Ingeniería
Investigadora del Instituto de Ambiente, Hábitat y Energía (INAHE)

Emanuel Schumacher

Ingeniero en Electrónica
Personal de Apoyo del Instituto de Ambiente, Hábitat y Energía (INAHE)

Andrea Pattini, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doctora en Medio Ambiente Visual e Iluminación eficiente
Investigadora – Directora del Instituto de Ambiente, Hábitat y Energía (INAHE)

Citas

ABD-ALHAMID, F., KENT, M., y WU, Y. (2023). Quantifying window view quality: A review on view perception assessment and representation methods. Building and Environment, 227, 109742. https://www.sciencedirect.com/science/article/pii/S0360132322009726?via%3Dihub

ARIES, M. B. C., VEITCH, J. A., y NEWSHAM, G. R. (2010). Windows, view, and office characteristics predict physical and psychological discomfort. Journal of Environmental Psychology, 30(4), 533–541. https://doi.org/10.1016/j.jenvp.2009.12.004

BAZAREVSKY, V., KARTYNNIK, Y., VAKUNOV, A., RAVEENDRAN, K., y GRUNDMANN, M. (2019). Blazeface: Sub-millisecond neural face detection on mobile gpus. ArXiv Preprint ArXiv:1907.05047. https://arxiv.org/abs/1907.05047

BERMAN, S. M., BULLIMORE, M. A., JACOBS, R., BAILEY, I. L., y GANDHI, N. (1993). An Objective-Measure of Discomfort Glare. 1993 IESNA Annual Conference. https://www.tandfonline.com/doi/abs/10.1080/00994480.1994.10748079

BOYCE, P. R. (2003). Human factors in lighting. Crc Press.

CIE S 017/E:2020. (2020). ILV: International Lighting Vocabulary, 2nd Edition. https://cie.co.at/publications/ilv-international-lighting-vocabulary-2nd-edition-0

DILAURA, D. L. (2010). A New Lighting Handbook. LEUKOS 6(4), 256–258. Taylor & Francis. https://doi.org/10.1080/15502724.2010.10732125

DOUGHTY, M. J. (2014). Spontaneous eyeblink activity under different conditions of gaze (eye position) and visual glare. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1147–1153. https://doi.org/10.1007/s00417-014-2673-8

FOTIOS, S., y KENT, M. (2021). Measuring discomfort from glare: Recommendations for good practice. Leukos, 17(4), 338–358. https://eprints.whiterose.ac.uk/165602/3/fotios%20kent%202020%20measuring%20discomfort%20AUTHORS%20FINAL%20VERSION.pdf

HAMEDANI, Z., SOLGI, E., SKATES, H., HINE, T., FERNANDO, R., LYONS, J., y DUPRE, K. (2019). Visual discomfort and glare assessment in office environments: A review of light-induced physiological and perceptual responses. Building and Environment, 153, 267–280. https://doi.org/10.1016/j.buildenv.2019.02.035

HAMEDANI, Z., SOLGI, E., HINE, T., SKATES, H., ISOARDI, G., y FERNANDO, R. (2020a). Lighting for work: A study of the relationships among discomfort glare, physiological responses and visual performance. Building and Environment, 167, 106478. https://doi.org/10.1016/j.buildenv.2019.106478

HAMEDANI, Z., SOLGI, E., HINE, T., y SKATES, H. (2020b). Revealing the relationships between luminous environment characteristics and physiological, ocular and performance measures: An experimental study. Building and Environment, 172, 106702. https://doi.org/10.1016/j.buildenv.2020.106702

HOPKINSON, R. G. (1950). The multiple criterion technique of subjective appraisal. Quarterly Journal of Experimental Psychology, 2(3), 124–131. https://journals.sagepub.com/doi/10.1080/17470215008416585

HOPKINSON, R. G. (1957). Evaluation of glare. Illuminating Engineering, 52(6), 305–316. https://www.brikbase.org/sites/default/files/ies_038.pdf

JOHRA, H., GADE, R., POULSEN, M. Ø., CHRISTENSEN, A. D., KHANIE, M. S., MOESLUND, T., y JENSEN, R. L. (2021). Artificial Intelligence for Detecting Indoor Visual Discomfort from Facial Analysis of Building Occupants. Journal of Physics: Conference Series, 2042(1), 12008. https://iopscience.iop.org/article/10.1088/1742-6596/2042/1/012008

KOKOSCHKA, S., y HAUBNER, P. (1985). Luminance ratios at visual display workstations and visual performance. Lighting Research & Technology, 17(3), 138–144. https://doi.org/10.1177/14771535850170030101

LIN, Y., FOTIOS, S., WEI, M., LIU, Y., GUO, W., y SUN, Y. (2015). Eye movement and pupil size constriction under discomfort glare. Investigative Ophthalmology & Visual Science, 56(3), 1649–1656. https://doi.org/10.1167/iovs.14-15963

LUCKIESH, M., y GUTH, S. K. (1949). Brightness in the visual field at the borderline between comfort and discomfort (BCD). Illuminating Engineering, 44, 650–670. https://www.brikbase.org/sites/default/files/ies_035_0.pdf

MATHEW, V., KURIAN, C. P., VARGHESE, S. G., PRIYADARSHINI, K., y BHANDARY, S. S. (2023). Real-time investigations and simulation on the impact of lighting ambience on circadian stimulus. Arabian Journal for Science and Engineering, 48(5), 6703–6716. https://link.springer.com/article/10.1007/s13369-022-07510-0

OSTERHAUS, W. K. E. (1996). Discomfort glare from large area glare sources at computer workstations. In Proceedings for the 1996 International Daylight Workshop, Building with Daylight: Energy-Efficient Design., (pp. 103–110). https://www.researchgate.net/publication/323350484_Review_of_Factors_Influencing_Discomfort_Glare_Perception_from_Daylight

OSTERHAUS, W. K E, y BAILEY, I. L. (1992). Large area glare sources and their effect on visual discomfort and visual performance at computer workstations. Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, 1825–1829. https://www.osti.gov/servlets/purl/10125235.

PERERA, A. (2023). Hawthorne effect: Definition, how it works, and how to avoid it. Simply Psychology. https://www.simplypsychology.org/hawthorne-effect.html

PIERSON, C., WIENOLD, J., y BODART, M. (2017). Discomfort glare perception in daylighting: influencing factors. Energy Procedia, 122, 331–336. https://doi.org/10.1016/j.egypro.2017.07.332

QUEK, G., JAIN, S., KARMANN, C., PIERSON, C., WIENOLD, J., y ANDERSEN, M. (2023). Comparison of questionnaire items for discomfort glare studies in daylit spaces. Lighting Research & Technology, 14771535231203564. http://dx.doi.org/10.1177/14771535231203564

QUEK, G., WIENOLD, J., KHANIE, M. S., ERELL, E., KAFTAN, E., TZEMPELIKOS, A., KONSTANTZOS, I., CHRISTOFFERSEN, J., KUHN, T., y ANDERSEN, M. (2021). Comparing performance of discomfort glare metrics in high and low adaptation levels. Building and Environment, 206, 108335. https://doi.org/10.1016/j.buildenv.2021.108335

RODRIGUEZ, R. G., GARRETÓN, J. A. Y., y PATTINI, A. E. (2017). An epidemiological approach to daylight discomfort glare. Building and Environment, 113, 39–48. http://dx.doi.org/10.1016/j.buildenv.2016.09.028

SAREY KHANIE, M. (2015). Human Responsive Daylighting in Offices: a Gaze-driven Approach for Dynamic Discomfort Glare Assessment. Ecole polytechnique federale de Lausanne. http://thedaylightsite.com/human-responsive-daylighting-in-offices/

SAREY KHANIE, M., STOLL, J., MENDE, S., WIENOLD, J., EINHÄUSER, W., y ANDERSEN, M. (2013). Uncovering relationships between view direction patterns and glare perception in a daylit workspace. https://www.researchgate.net/publication/280728553_Uncovering_relationships_between_view_direction_patterns_and_glare_perception_in_a_daylit_workspace

SHARAM, L. A., MAYER, K. M., y BAUMANN, O. (2023). Design by nature: The influence of windows on cognitive performance and affect. Journal of Environmental Psychology, 85, 101923. https://doi.org/10.1016/j.jenvp.2022.101923

SHIN, J. Y., YUN, G. Y., y KIM, J. T. (2012). Evaluation of daylighting effectiveness and energy saving potentials of light-pipe systems in buildings. Indoor and Built Environment, 21(1), 129–136. https://doi.org/10.1177/1420326X11420011

SUK, J. Y., SCHILER, M., y KENSEK, K. (2016). Absolute glare factor and relative glare factor based metric: Predicting and quantifying levels of daylight glare in office space. Energy and Buildings, 130, 8–19. https://thuvien.huce.edu.vn/kiposdata1/baotapchi/Tapchinuocngoai/Energy%20and%20Buildings/Energy%20and%20Buildings.Vol%20130.A3.pdf

TSAO, L.-J. (2008). Driver drowsiness detection and warning under various illumination conditions.Master Tesis. Institute of Computer Science and Information Engineering National Central University Chungli.

WIENOLD, J., y CHRISTOFFERSEN, J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 38(7), 743–757. https://www.sciencedirect.com/science/article/abs/pii/S0378778806000715

WIENOLD, J., IWATA, T., SAREY KHANIE, M., ERELL, E., KAFTAN, E., RODRIGUEZ, R. G., YAMIN GARRETÓN, J. A., TZEMPELIKOS, T., KONSTANTZOS, I., CHRISTOFFERSEN, J., y others. (2019). Cross-validation and robustness of daylight glare metrics. Lighting Research & Technology, 51(7), 983–1013. https://journals.sagepub.com/doi/full/10.1177/1477153519826003

YAMIN GARRETÓN, J. A., RODRIGUEZ, R. G., y PATTINI, A. E. (2016). Glare indicators: an analysis of ocular behaviour in an office equipped with venetian blinds. Indoor and Built Environment, 25(1), 69–80. https://doi.org/10.1177/1420326X14538082

YAMIN GARRETÓN, J., RODRIGUEZ, R. G., RUIZ, A., y PATTINI, A. E. (2015). Degree of eye opening: A new discomfort glare indicator. Building and Environment, 88, 142–150. https://www.sciencedirect.com/science/article/abs/pii/S0360132314003631

YAN, G., y GRISHCHENKO, I. (2022). MediaPipeFace Landmark. https://www.researchgate.net/publication/364279614_MediaPipe's_Landmarks_with_RNN_for_Dynamic_Sign_Language_Recognition

Publicado

2024-06-30

Cómo citar

Yamin-Garretón, J., Jaime, D., de Gastines, M., Schumacher, E., & Pattini, A. (2024). Propuesta metodológica para medir el deslumbramiento en ambientes interiores mediante cuatro rangos de apertura ocular. Hábitat Sustentable, 14(1), 08–21. https://doi.org/10.22320/07190700.2024.14.01.01

Número

Sección

Artículos