Proposta metodológica para medir o encandeamento em ambientes internos utilizando quatro gamas de abertura ocula

Autores

DOI:

https://doi.org/10.22320/07190700.2024.14.01.01

Palavras-chave:

ofuscament, conforto visual, indicadores oculares

Resumo

O desenvolvimento de modelos de ofuscamento contribui para uma melhor avaliação do conforto visual dos ocupantes de ambientes internos. Os indicadores oculares podem ser uma ferramenta adequada para avaliar o ofuscamento de forma dinâmica em climas ensolarados para evitar o desconforto visual. Neste trabalho, o grau de abertura ocular é medido e proposto para ser medido em quatro faixas (oclusão, semi-oclusão, semi-abertura e abertura) por meio de um rastreador ocular. O objetivo deste trabalho foi avaliar como o grau de abertura ocular está relacionado aos níveis de iluminância vertical (Ev) abaixo de 2484 lx (valor em que aparece a sensação de brilho incômodo), bem como determinar se a percepção subjetiva de brilho das pessoas corresponde às faixas de brilho propostas por Wienold (2019). Esses parâmetros foram medidos em três condições de percepção de ofuscamento (perceptível, incômodo e intolerável). Os resultados mostraram que a medição da abertura ocular em quatro faixas tem o potencial de quantificar de forma objetiva e dinâmica a sensação de ofuscamento em todos os cenários avaliados e, em termos de sua relação com os valores de Ev de referência, os valores percebidos como perceptíveis e incômodos foram inferiores aos valores de referência, enquanto os valores percebidos como intoleráveis foram coincidentes.

Downloads

Não há dados estatísticos.

Biografias Autor

Julieta Yamin-Garretón, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doutoramento em Ambiente Visual e Iluminação Eficiente
Investigador do Instituto do Ambiente, do Habitat e da Energia (INAHE)

Darío Jaime, Instituto de Ambiente, Hábitat y Energía (INAHE), Mendoza, Argentina

Licenciatura em Energias Renováveis
Pessoal de apoio - Programador

Maureen de Gastines, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doutoramento em Engenharia
Investigador do Instituto do Ambiente, Habitat e Energia (INAHE)

Emanuel Schumacher

Engenheiro eletrónico
Pessoal de apoio do Instituto do Ambiente, do Habitat e da Energia (INAHE)

Andrea Pattini, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina

Doutoramento em Ambiente Visual e Iluminação Eficiente
Investigador - Diretor do Instituto do Ambiente, Habitat e Energia (INAHE)

Referências

ABD-ALHAMID, F., KENT, M., y WU, Y. (2023). Quantifying window view quality: A review on view perception assessment and representation methods. Building and Environment, 227, 109742. https://www.sciencedirect.com/science/article/pii/S0360132322009726?via%3Dihub

ARIES, M. B. C., VEITCH, J. A., y NEWSHAM, G. R. (2010). Windows, view, and office characteristics predict physical and psychological discomfort. Journal of Environmental Psychology, 30(4), 533–541. https://doi.org/10.1016/j.jenvp.2009.12.004

BAZAREVSKY, V., KARTYNNIK, Y., VAKUNOV, A., RAVEENDRAN, K., y GRUNDMANN, M. (2019). Blazeface: Sub-millisecond neural face detection on mobile gpus. ArXiv Preprint ArXiv:1907.05047. https://arxiv.org/abs/1907.05047

BERMAN, S. M., BULLIMORE, M. A., JACOBS, R., BAILEY, I. L., y GANDHI, N. (1993). An Objective-Measure of Discomfort Glare. 1993 IESNA Annual Conference. https://www.tandfonline.com/doi/abs/10.1080/00994480.1994.10748079

BOYCE, P. R. (2003). Human factors in lighting. Crc Press.

CIE S 017/E:2020. (2020). ILV: International Lighting Vocabulary, 2nd Edition. https://cie.co.at/publications/ilv-international-lighting-vocabulary-2nd-edition-0

DILAURA, D. L. (2010). A New Lighting Handbook. LEUKOS 6(4), 256–258. Taylor & Francis. https://doi.org/10.1080/15502724.2010.10732125

DOUGHTY, M. J. (2014). Spontaneous eyeblink activity under different conditions of gaze (eye position) and visual glare. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1147–1153. https://doi.org/10.1007/s00417-014-2673-8

FOTIOS, S., y KENT, M. (2021). Measuring discomfort from glare: Recommendations for good practice. Leukos, 17(4), 338–358. https://eprints.whiterose.ac.uk/165602/3/fotios%20kent%202020%20measuring%20discomfort%20AUTHORS%20FINAL%20VERSION.pdf

HAMEDANI, Z., SOLGI, E., SKATES, H., HINE, T., FERNANDO, R., LYONS, J., y DUPRE, K. (2019). Visual discomfort and glare assessment in office environments: A review of light-induced physiological and perceptual responses. Building and Environment, 153, 267–280. https://doi.org/10.1016/j.buildenv.2019.02.035

HAMEDANI, Z., SOLGI, E., HINE, T., SKATES, H., ISOARDI, G., y FERNANDO, R. (2020a). Lighting for work: A study of the relationships among discomfort glare, physiological responses and visual performance. Building and Environment, 167, 106478. https://doi.org/10.1016/j.buildenv.2019.106478

HAMEDANI, Z., SOLGI, E., HINE, T., y SKATES, H. (2020b). Revealing the relationships between luminous environment characteristics and physiological, ocular and performance measures: An experimental study. Building and Environment, 172, 106702. https://doi.org/10.1016/j.buildenv.2020.106702

HOPKINSON, R. G. (1950). The multiple criterion technique of subjective appraisal. Quarterly Journal of Experimental Psychology, 2(3), 124–131. https://journals.sagepub.com/doi/10.1080/17470215008416585

HOPKINSON, R. G. (1957). Evaluation of glare. Illuminating Engineering, 52(6), 305–316. https://www.brikbase.org/sites/default/files/ies_038.pdf

JOHRA, H., GADE, R., POULSEN, M. Ø., CHRISTENSEN, A. D., KHANIE, M. S., MOESLUND, T., y JENSEN, R. L. (2021). Artificial Intelligence for Detecting Indoor Visual Discomfort from Facial Analysis of Building Occupants. Journal of Physics: Conference Series, 2042(1), 12008. https://iopscience.iop.org/article/10.1088/1742-6596/2042/1/012008

KOKOSCHKA, S., y HAUBNER, P. (1985). Luminance ratios at visual display workstations and visual performance. Lighting Research & Technology, 17(3), 138–144. https://doi.org/10.1177/14771535850170030101

LIN, Y., FOTIOS, S., WEI, M., LIU, Y., GUO, W., y SUN, Y. (2015). Eye movement and pupil size constriction under discomfort glare. Investigative Ophthalmology & Visual Science, 56(3), 1649–1656. https://doi.org/10.1167/iovs.14-15963

LUCKIESH, M., y GUTH, S. K. (1949). Brightness in the visual field at the borderline between comfort and discomfort (BCD). Illuminating Engineering, 44, 650–670. https://www.brikbase.org/sites/default/files/ies_035_0.pdf

MATHEW, V., KURIAN, C. P., VARGHESE, S. G., PRIYADARSHINI, K., y BHANDARY, S. S. (2023). Real-time investigations and simulation on the impact of lighting ambience on circadian stimulus. Arabian Journal for Science and Engineering, 48(5), 6703–6716. https://link.springer.com/article/10.1007/s13369-022-07510-0

OSTERHAUS, W. K. E. (1996). Discomfort glare from large area glare sources at computer workstations. In Proceedings for the 1996 International Daylight Workshop, Building with Daylight: Energy-Efficient Design., (pp. 103–110). https://www.researchgate.net/publication/323350484_Review_of_Factors_Influencing_Discomfort_Glare_Perception_from_Daylight

OSTERHAUS, W. K E, y BAILEY, I. L. (1992). Large area glare sources and their effect on visual discomfort and visual performance at computer workstations. Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, 1825–1829. https://www.osti.gov/servlets/purl/10125235.

PERERA, A. (2023). Hawthorne effect: Definition, how it works, and how to avoid it. Simply Psychology. https://www.simplypsychology.org/hawthorne-effect.html

PIERSON, C., WIENOLD, J., y BODART, M. (2017). Discomfort glare perception in daylighting: influencing factors. Energy Procedia, 122, 331–336. https://doi.org/10.1016/j.egypro.2017.07.332

QUEK, G., JAIN, S., KARMANN, C., PIERSON, C., WIENOLD, J., y ANDERSEN, M. (2023). Comparison of questionnaire items for discomfort glare studies in daylit spaces. Lighting Research & Technology, 14771535231203564. http://dx.doi.org/10.1177/14771535231203564

QUEK, G., WIENOLD, J., KHANIE, M. S., ERELL, E., KAFTAN, E., TZEMPELIKOS, A., KONSTANTZOS, I., CHRISTOFFERSEN, J., KUHN, T., y ANDERSEN, M. (2021). Comparing performance of discomfort glare metrics in high and low adaptation levels. Building and Environment, 206, 108335. https://doi.org/10.1016/j.buildenv.2021.108335

RODRIGUEZ, R. G., GARRETÓN, J. A. Y., y PATTINI, A. E. (2017). An epidemiological approach to daylight discomfort glare. Building and Environment, 113, 39–48. http://dx.doi.org/10.1016/j.buildenv.2016.09.028

SAREY KHANIE, M. (2015). Human Responsive Daylighting in Offices: a Gaze-driven Approach for Dynamic Discomfort Glare Assessment. Ecole polytechnique federale de Lausanne. http://thedaylightsite.com/human-responsive-daylighting-in-offices/

SAREY KHANIE, M., STOLL, J., MENDE, S., WIENOLD, J., EINHÄUSER, W., y ANDERSEN, M. (2013). Uncovering relationships between view direction patterns and glare perception in a daylit workspace. https://www.researchgate.net/publication/280728553_Uncovering_relationships_between_view_direction_patterns_and_glare_perception_in_a_daylit_workspace

SHARAM, L. A., MAYER, K. M., y BAUMANN, O. (2023). Design by nature: The influence of windows on cognitive performance and affect. Journal of Environmental Psychology, 85, 101923. https://doi.org/10.1016/j.jenvp.2022.101923

SHIN, J. Y., YUN, G. Y., y KIM, J. T. (2012). Evaluation of daylighting effectiveness and energy saving potentials of light-pipe systems in buildings. Indoor and Built Environment, 21(1), 129–136. https://doi.org/10.1177/1420326X11420011

SUK, J. Y., SCHILER, M., y KENSEK, K. (2016). Absolute glare factor and relative glare factor based metric: Predicting and quantifying levels of daylight glare in office space. Energy and Buildings, 130, 8–19. https://thuvien.huce.edu.vn/kiposdata1/baotapchi/Tapchinuocngoai/Energy%20and%20Buildings/Energy%20and%20Buildings.Vol%20130.A3.pdf

TSAO, L.-J. (2008). Driver drowsiness detection and warning under various illumination conditions.Master Tesis. Institute of Computer Science and Information Engineering National Central University Chungli.

WIENOLD, J., y CHRISTOFFERSEN, J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 38(7), 743–757. https://www.sciencedirect.com/science/article/abs/pii/S0378778806000715

WIENOLD, J., IWATA, T., SAREY KHANIE, M., ERELL, E., KAFTAN, E., RODRIGUEZ, R. G., YAMIN GARRETÓN, J. A., TZEMPELIKOS, T., KONSTANTZOS, I., CHRISTOFFERSEN, J., y others. (2019). Cross-validation and robustness of daylight glare metrics. Lighting Research & Technology, 51(7), 983–1013. https://journals.sagepub.com/doi/full/10.1177/1477153519826003

YAMIN GARRETÓN, J. A., RODRIGUEZ, R. G., y PATTINI, A. E. (2016). Glare indicators: an analysis of ocular behaviour in an office equipped with venetian blinds. Indoor and Built Environment, 25(1), 69–80. https://doi.org/10.1177/1420326X14538082

YAMIN GARRETÓN, J., RODRIGUEZ, R. G., RUIZ, A., y PATTINI, A. E. (2015). Degree of eye opening: A new discomfort glare indicator. Building and Environment, 88, 142–150. https://www.sciencedirect.com/science/article/abs/pii/S0360132314003631

YAN, G., y GRISHCHENKO, I. (2022). MediaPipeFace Landmark. https://www.researchgate.net/publication/364279614_MediaPipe's_Landmarks_with_RNN_for_Dynamic_Sign_Language_Recognition

Publicado

2024-06-30

Como Citar

Yamin-Garretón, J., Jaime, D., de Gastines, M., Schumacher, E., & Pattini, A. (2024). Proposta metodológica para medir o encandeamento em ambientes internos utilizando quatro gamas de abertura ocula. Hábitat Sustentable, 14(1), 08–21. https://doi.org/10.22320/07190700.2024.14.01.01

Edição

Secção

Artículos