Mejora de la eficiencia energética en fachadas de vidrio mediante estrategias de diseño biomimético

Autores/as

DOI:

https://doi.org/10.22320/07190700.2024.14.01.03

Palabras clave:

biomímesis, diseño de fachadas, eficiencia energética, termorregulación

Resumen

La industria de la construcción, responsable de una gran proporción del consumo de energía, está buscando soluciones para reducir el consumo de energía. Este estudio propone fachadas biomiméticas para garantizar el confort térmico. En primer lugar, examinó los sistemas de fachadas biomiméticas en la literatura. Luego, analizó los métodos de termorregulación de la naturaleza, el nivel de biomimética y las estrategias desarrolladas por los seres vivos. Como resultado de los análisis, se amplió la información biológica relativa a los tres fenómenos seleccionados y se determinó cómo transferir el método de biomimética que podría estar en la envolvente del edificio. Se realizaron simulaciones de energía en la fachada de vidrio del baño Süleyman Pasha para evaluar la eficiencia energética de la envoltura. Se encontró que los métodos inspirados en la naturaleza contribuyeron significativamente al consumo de energía del edificio cuando se diseñaron los resultados de simulación de la fachada.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Büşra Öztürk, Selcuk University, Konya, Türkiye

Master in Architecture
Research Assistant, Department of Architecture

Güneş Mutlu-Avinç, Muş Alparslan University, Muş, Türkiye

Doctor en Arquitectura
Profesor Asistente

Semra Arslan-Selçuk, Gazi University, Ankara, Türkiye

Doctor en Arquitectura
Profesor asociado e investigador, Departamento de Arquitectura

Citas

ALY, Z., IBRAHIM, A., & ABDELMOHSEN, S. (2021). Augmenting passive actuation of hygromorphic skins in desert climates: learning from thorny devil lizard skins. In 9th International Conference of the Arab Society for Computer Aided Architectural Design, American University in Cairo, Egypt.

Asknature (n.d.). https://asknature.org/strategy/leaves-protect-from-freezing/

BADARNAH, L., A. (2015). A biophysical framework of heat regulation strategies for the design of biomimetic building envelopes. Procedia Engineering, 118,1225-1235. https://doi.org/10.1016/j.proeng.2015.08.474

BADARNAH, L., FARCHI, Y. N., & KNAACK, U. (2010). Solutions from nature for building envelope thermoregulation. Design & Nature V: Comparing Design in Nature with Science and Engineering, 5, 251. https://doi.org/10.2495/DN100221

BADARNAH, L. & KADRI, U. A. (2015). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120–33. https://doi.org/10.1080/00038628.2014.922458

BADARNAH, L. (2017). Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation. Buildings, 7(2), 40. https://doi.org/10.3390/buildings7020040

Cactus Kingdom (n.d.). https://cactuskingdom.ca/product/fenestraria-aurantiaca-baby-toes-seed/

ÇAĞLAR, S. (2020). Voronoi Diyagramları Dünyayı Anlamamızı Nasıl Sağlar? https://www.matematiksel.org/voronoi-diyagramlari-dunyayi-anlamamizi-nasil-saglar/

ENGIN, N. (2012). Enerji Etkin Tasarımda Pasif İklimlendirme: Doğal Havalandırma. Tesisat Mühendisliği, 129, 62-70. https://www.mmo.org.tr/sites/default/files/c8aa7c541085a2b_ek.pdf

FARAGALLA, A. M., & ASADI, S. (2022). Biomimetic design for adaptive building façades: a paradigm shift towards environmentally conscious architecture. Energies, 15(15), 5390. https://doi.org/10.3390/en15155390

FARCHI NACHMAN, Y. (2009). Learning from nature: Thermoregulation envelope, in Department of Building Technology. Delft University of Technology: Façade Design.

HELMS, M., VATTAM, S. S., & GOEL, A. K. (2009). Biologically inspired design: process and products. Design Studies, 30(5), 606–622. https://doi.org/10.1016/j.destud.2009.04.003

HELMS, M. E., VATTAM, S. S., GOEL, A. K., YEN, J., & WEISSBURG, M. (2008). Problem-driven and solution-based design: twin processes of biologically inspired design Silicon+Skin: Biological Processes and Computation: Proc. 28th Annual Conf. Assoc. Computer-Aided Design in Architecture (ACADIA) (Minneapolis, Minnesota: University of Minnesota, 2008) 94–101.

International Energy Agency. Energy Efficiency (2019). Buildings, The global exchange for energy efficiency policies, data and analysis.

ISO/TC266 (2015). Biomimetics Terminology, Concepts and Methodology (Berlin: Beuth) ISO 18458.

KAHRAMANOĞLU, B., & ALP, N. Ç. (2021). Kinetik Sistemli Bina Cephelerinin Modelleme Yöntemlerinin İncelenmesi. AURUM Journal of Engineering Systems and Architecture, 5(1), 119-138. https://doi.org/10.53600/ajesa.861479

KALATHA, A. (2016). The water wall: A bio-inspired thermoregulative facade system. [Unpublished master thesis], Delft University of Technology, Netherlands.

KIM, K., & TORRES, A. (2021). Integrated Façades for Building Energy Conservation; IC-AIRES, Lecture Notes in Networks and Systems; Springer: Cham, Switzerland; 361.

KURU, A., OLDFIELD, P., BONSER, S., & FIORITO, F. (2019). Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy and Buildings, 205, 109544. https://doi.org/10.1016/j.enbuild.2019.109544

LEE, E. S., & TAVIL, A. (2007). Energy and visual comfort performance of electrochromic windows with overhangs. Building and Environment, 42(6), 2439-2449. https://doi.org/10.1016/j.buildenv.2006.04.016

MUTLU AVINÇ, G., & ARSLAN SELÇUK, S. (2019). Mimari Tasarımda Biyomimetik Yaklaşımlar: Pavyonlar Üzerine Bir Araştırma. Online Journal Of Art & Design, 7(2), 92-107. http://www.adjournal.net/articles/72/728.pdf

ÖZTÜRK, BÜŞRA., (2023). Çağdaş eklerin tarihi yapının enerji performansına etkisinin incelenmesi [MSc thesis]. Konya Teknik University, Institute of Graduate Education, Konya.

PACHECO, R., ORDÓÑEZ, J., & MARTÍNEZ, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559-3573. https://doi.org/10.1016/j.rser.2012.03.045

SHEIKH, W. T., & ASGHAR, Q. (2019). Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings. Frontiers of Architectural Research, 8(3), 319-331. https://doi.org/10.1016/j.foar.2019.06.001

SOMMESE, F., BADARNAH, L., & AUSIELLO, G. (2022). A critical review of biomimetic building envelopes: Towards a bio-adaptive model from nature to architecture. Renewable and Sustainable Energy Reviews, 169, 112850. https://doi.org/10.1016/j.rser.2022.112850

SPECK, T., SPECK, O., BEHESHTI, N., & MCINTOSH, A. (2008). Process sequences in biomimetic research. Design and Nature, 4, 3–11. https://doi.org/10.2495/DN080011

TABADKANI, A., ROETZEL, A., LI, H. X. & TSANGRASSOULIS, A. (2021). Design approaches and typologies of adaptive façades: A review. Automation in Construction. 121, 103450. https://doi.org/10.1016/j.autcon.2020.103450

PAAR, M. J., & PETUTSCHNIGG, A. (2016). Biomimetic inspired, natural ventilated facade–A conceptual study. Journal of Facade Design and Engineering, 4(3-4), 131-142. https://doi.org/10.3233/FDE-171645

VATTAM, S., HELMS, M. E., & GOEL, A. K. (2007). Biologically inspired innovation in engineering design: a cognitive study. http://hdl.handle.net/1853/14346

ZARI, M. P. (2007). Biomimetic approaches to architectural design for increased sustainability. In The SB07 New Zealand Sustainable Building Conference, 33-42. https://www.semanticscholar.org/paper/BIOMIMETIC-APPROACHES-TO-ARCHITECTURAL-DESIGN-FOR-Zari/1a7b024096491c64beafc4d9b243f84a321cd697

Publicado

2024-06-30

Cómo citar

Öztürk, B., Mutlu-Avinç, G., & Arslan-Selçuk, S. (2024). Mejora de la eficiencia energética en fachadas de vidrio mediante estrategias de diseño biomimético. Hábitat Sustentable, 14(1), 34–43. https://doi.org/10.22320/07190700.2024.14.01.03

Número

Sección

Artículos