Melhorando a eficiência energética em fachadas de vidro por meio de estratégias de design biomimético

Autores

DOI:

https://doi.org/10.22320/07190700.2024.14.01.03

Palavras-chave:

biomimética, design de fachadas, eficiência energética, termorregulação

Resumo

A indústria da construção, responsável por grande parte do consumo de energia, procura soluções para reduzir o consumo de energia. Este estudo propõe fachadas biomiméticas para garantir conforto térmico. Primeiramente, examinou sistemas de fachadas biomiméticos na literatura. Em seguida, analisou os métodos de termorregulação da natureza, o nível de biomimética e as estratégias desenvolvidas pelos seres vivos. Como resultado das análises, a informação biológica sobre os três fenômenos selecionados foi ampliada e determinada como transferir o método de biomimética que poderia ser para a envolvente do edifício. Simulações energéticas foram realizadas na fachada de vidro do Süleyman Pasha Bath para avaliar a eficiência energética do envelope.   Verificou-se que os métodos inspirados na natureza contribuíram significativamente para o consumo de energia do edifício quando os resultados da simulação da fachada projetada.

Downloads

Não há dados estatísticos.

Biografias Autor

Büşra Öztürk, Selcuk University, Konya, Türkiye

Mestrado em Arquitetura
Assistente de investigação, Departamento de Arquitetura

Güneş Mutlu-Avinç, Muş Alparslan University, Muş, Türkiye

Doutor em Arquitetura
Professor Auxiliar

Semra Arslan-Selçuk, Gazi University, Ankara, Türkiye

Doutor em Arquitetura
Professor associado e investigador, Departamento de Arquitetura

Referências

ALY, Z., IBRAHIM, A., & ABDELMOHSEN, S. (2021). Augmenting passive actuation of hygromorphic skins in desert climates: learning from thorny devil lizard skins. In 9th International Conference of the Arab Society for Computer Aided Architectural Design, American University in Cairo, Egypt.

Asknature (n.d.). https://asknature.org/strategy/leaves-protect-from-freezing/

BADARNAH, L., A. (2015). A biophysical framework of heat regulation strategies for the design of biomimetic building envelopes. Procedia Engineering, 118,1225-1235. https://doi.org/10.1016/j.proeng.2015.08.474

BADARNAH, L., FARCHI, Y. N., & KNAACK, U. (2010). Solutions from nature for building envelope thermoregulation. Design & Nature V: Comparing Design in Nature with Science and Engineering, 5, 251. https://doi.org/10.2495/DN100221

BADARNAH, L. & KADRI, U. A. (2015). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120–33. https://doi.org/10.1080/00038628.2014.922458

BADARNAH, L. (2017). Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation. Buildings, 7(2), 40. https://doi.org/10.3390/buildings7020040

Cactus Kingdom (n.d.). https://cactuskingdom.ca/product/fenestraria-aurantiaca-baby-toes-seed/

ÇAĞLAR, S. (2020). Voronoi Diyagramları Dünyayı Anlamamızı Nasıl Sağlar? https://www.matematiksel.org/voronoi-diyagramlari-dunyayi-anlamamizi-nasil-saglar/

ENGIN, N. (2012). Enerji Etkin Tasarımda Pasif İklimlendirme: Doğal Havalandırma. Tesisat Mühendisliği, 129, 62-70. https://www.mmo.org.tr/sites/default/files/c8aa7c541085a2b_ek.pdf

FARAGALLA, A. M., & ASADI, S. (2022). Biomimetic design for adaptive building façades: a paradigm shift towards environmentally conscious architecture. Energies, 15(15), 5390. https://doi.org/10.3390/en15155390

FARCHI NACHMAN, Y. (2009). Learning from nature: Thermoregulation envelope, in Department of Building Technology. Delft University of Technology: Façade Design.

HELMS, M., VATTAM, S. S., & GOEL, A. K. (2009). Biologically inspired design: process and products. Design Studies, 30(5), 606–622. https://doi.org/10.1016/j.destud.2009.04.003

HELMS, M. E., VATTAM, S. S., GOEL, A. K., YEN, J., & WEISSBURG, M. (2008). Problem-driven and solution-based design: twin processes of biologically inspired design Silicon+Skin: Biological Processes and Computation: Proc. 28th Annual Conf. Assoc. Computer-Aided Design in Architecture (ACADIA) (Minneapolis, Minnesota: University of Minnesota, 2008) 94–101.

International Energy Agency. Energy Efficiency (2019). Buildings, The global exchange for energy efficiency policies, data and analysis.

ISO/TC266 (2015). Biomimetics Terminology, Concepts and Methodology (Berlin: Beuth) ISO 18458.

KAHRAMANOĞLU, B., & ALP, N. Ç. (2021). Kinetik Sistemli Bina Cephelerinin Modelleme Yöntemlerinin İncelenmesi. AURUM Journal of Engineering Systems and Architecture, 5(1), 119-138. https://doi.org/10.53600/ajesa.861479

KALATHA, A. (2016). The water wall: A bio-inspired thermoregulative facade system. [Unpublished master thesis], Delft University of Technology, Netherlands.

KIM, K., & TORRES, A. (2021). Integrated Façades for Building Energy Conservation; IC-AIRES, Lecture Notes in Networks and Systems; Springer: Cham, Switzerland; 361.

KURU, A., OLDFIELD, P., BONSER, S., & FIORITO, F. (2019). Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy and Buildings, 205, 109544. https://doi.org/10.1016/j.enbuild.2019.109544

LEE, E. S., & TAVIL, A. (2007). Energy and visual comfort performance of electrochromic windows with overhangs. Building and Environment, 42(6), 2439-2449. https://doi.org/10.1016/j.buildenv.2006.04.016

MUTLU AVINÇ, G., & ARSLAN SELÇUK, S. (2019). Mimari Tasarımda Biyomimetik Yaklaşımlar: Pavyonlar Üzerine Bir Araştırma. Online Journal Of Art & Design, 7(2), 92-107. http://www.adjournal.net/articles/72/728.pdf

ÖZTÜRK, BÜŞRA., (2023). Çağdaş eklerin tarihi yapının enerji performansına etkisinin incelenmesi [MSc thesis]. Konya Teknik University, Institute of Graduate Education, Konya.

PACHECO, R., ORDÓÑEZ, J., & MARTÍNEZ, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559-3573. https://doi.org/10.1016/j.rser.2012.03.045

SHEIKH, W. T., & ASGHAR, Q. (2019). Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings. Frontiers of Architectural Research, 8(3), 319-331. https://doi.org/10.1016/j.foar.2019.06.001

SOMMESE, F., BADARNAH, L., & AUSIELLO, G. (2022). A critical review of biomimetic building envelopes: Towards a bio-adaptive model from nature to architecture. Renewable and Sustainable Energy Reviews, 169, 112850. https://doi.org/10.1016/j.rser.2022.112850

SPECK, T., SPECK, O., BEHESHTI, N., & MCINTOSH, A. (2008). Process sequences in biomimetic research. Design and Nature, 4, 3–11. https://doi.org/10.2495/DN080011

TABADKANI, A., ROETZEL, A., LI, H. X. & TSANGRASSOULIS, A. (2021). Design approaches and typologies of adaptive façades: A review. Automation in Construction. 121, 103450. https://doi.org/10.1016/j.autcon.2020.103450

PAAR, M. J., & PETUTSCHNIGG, A. (2016). Biomimetic inspired, natural ventilated facade–A conceptual study. Journal of Facade Design and Engineering, 4(3-4), 131-142. https://doi.org/10.3233/FDE-171645

VATTAM, S., HELMS, M. E., & GOEL, A. K. (2007). Biologically inspired innovation in engineering design: a cognitive study. http://hdl.handle.net/1853/14346

ZARI, M. P. (2007). Biomimetic approaches to architectural design for increased sustainability. In The SB07 New Zealand Sustainable Building Conference, 33-42. https://www.semanticscholar.org/paper/BIOMIMETIC-APPROACHES-TO-ARCHITECTURAL-DESIGN-FOR-Zari/1a7b024096491c64beafc4d9b243f84a321cd697

Publicado

2024-06-30

Como Citar

Öztürk, B., Mutlu-Avinç, G., & Arslan-Selçuk, S. (2024). Melhorando a eficiência energética em fachadas de vidro por meio de estratégias de design biomimético. Hábitat Sustentable, 14(1), 34–43. https://doi.org/10.22320/07190700.2024.14.01.03

Edição

Secção

Artículos