Biocompuesto de fibra de bananeira, cáscara de amendoim de Manabí (Ecuador) y poliestireno expandido reciclado

Autores/as

DOI:

https://doi.org/10.22320/07190700.2024.14.02.09

Palabras clave:

reciclado, fibras naturales, panel, poliestireno expandido

Resumen

Esta investigación consiste en el desarrollo de un biocompuesto polimérico termoplástico en una matriz que se obtiene de la disolución del poliestireno expandido (EPS) reciclado, reforzado con fibra del pseudotallo de plátano y cáscara de cacahuete. Se elaboraron 6 modelos con los materiales, de los cuales el que obtuvo el mejor resultado fue la última dosificación, con un contenido del 63% de EPS diluido, 25% de fibra de plátano en tiras (40 mm) y 12% de cáscara de cacahuete triturado (1 a 3 mm). En la prueba de flexión alcanzó un MOR de 12 N/mm2 y un MOE de 55 N/mm2; la resistencia a la compresión fue de 8,60 N/mm2; 10% de absorción de humedad; y en el ensayo de conductividad térmica tuvo un valor de 0,095 W/m‧k que le otorga la propiedad de material aislante. Los valores alcanzados cumplen con las normas ecuatorianas INEN 3110 para tableros de partículas. Este trabajo evidencia la capacidad de los materiales utilizados para la manufactura de diversos componentes ligeros, resistentes y aislantes que se pueden emplear en las edificaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Eddie Efrén Echeverría-Maggi, Universidad Laica Vicente Rocafuente, Guayaquil, Ecuador.

Magíster en Geomática
Profesor de la Facultad de Ingeniería, Industria y Construcción

Vicente Flores-Alés, Universidad de Sevilla, Sevilla, España.

Doctor en Química
Profesor, Departamento de Construcción Arquitectónica II , Escuela Técnica Superior de Ingeniería de Edificación

Juan Jesús Martín-del-Río, Universidad de Sevilla, Sevilla, España.

Doctor en Química
Profesor, Departamento de Construcción Arquitectónica II , Escuela Técnica Superior de Ingeniería de Edificación

Citas

ABD-ELRAHMAN, M. H., SAAD AGWA, I., MOSTAFA, S. A., & YOUSSF, O. (2023). Effect of utilizing peanut husk ash on the properties of ultra-high strength concrete. Construction and Building Materials, 384, 131398. https://doi.org/10.1016/J.CONBUILDMAT.2023.131398

ADDIS, L. B., SENDEKIE, Z. B., HABTU, N. G., SCHUBERT, D. W., ROETHER, J. A., & BOCCACCINI, A. R. (2023). Characterization of False Banana Fiber as a Potential Reinforcement Material for Geopolymer Composites in B.H. Woldegiorgis, K. Mequanint, M.Z. GETIE, E.G., MULAT, A., & ALEMAYEHU ASSEGIE, (Eds), Advancement of Science and Technology. Green Energy and Technology (pp.49–63). Springer, Cham. https://doi.org/10.1007/978-3-031-33610-2_3/TABLES/2

ADDIS, L. B., SENDEKIE, Z. B., HABTU, N. G., SCHUBERT, D. W., ROETHER, J. A., & BOCCACCINI, A. R. (2024). False banana fiber reinforced geopolymer composite – A novel sustainable material. Ceramics International, 50(13-Part b), 24442-24450. https://doi.org/10.1016/J.CERAMINT.2024.04.177

AENOR. (2024). UNE-EN 312:2010 | Normas AENOR. Tableros de Partículas. Especificaciones. https://tienda.aenor.com/norma-une-en-312-2010-n0046341

AGUILLÓN, B., CABRERA, D., LAZO, M., ADRIÁN, E., CARRASCO, M., MEDINA-PERILLA, J., VERA-VILLALOBOS, J., & RIGAIL-CEDEÑO, A. (2024). Sorbitol glycidyl ether Epoxy/Brewer’s spent grain biocomposite for fiberboard applications. Case Studies in Chemical and Environmental Engineering, 9, 100705. https://doi.org/10.1016/J.CSCEE.2024.100705

AHMAD, T., & DANISH, M. (2018). Prospects of banana waste utilization in wastewater treatment: A review. Journal of Environmental Management, 206, 330–348. https://doi.org/10.1016/J.JENVMAN.2017.10.061

AKINDAPO, J. O., BINNI, U. A., & SANUSI, O. M. (2015). Development of Roofing Sheet Material Using Groundnut Shell Particles and Epoxy Resin as Composite Material. American Journal of Engineering Research (AJER), 4(6), 165–173. https://www.ajer.org/papers/v4(06)/T04601650173.pdf

AKINYEMI, B. A., & DAI, C. (2020). Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241, 118041. https://doi.org/10.1016/j.conbuildmat.2020.118041

ALI, B., AZAB, M., AHMED, H., KURDA, R., EL OUNI, M. H., & ELHAG, A. B. (2022). Investigation of physical, strength, and ductility characteristics of concrete reinforced with banana (Musaceae) stem fiber. Journal of Building Engineering, 61, 105024. https://doi.org/10.1016/j.jobe.2022.105024

ATTIA, M. M., AL SAYED, A. A. K.-A., TAYEH, B. A., & SHAWKY, S. M. M. (2022). Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study. Advances in Concrete Construction, 14(5), 355–368. https://doi.org/10.12989/acc.2022.14.5.355

BALDA, S., SHARMA, A., CAPALASH, N., & SHARMA, P. (2021). Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technologies and Environmental Policy, 23, 1389–1401. https://doi.org/10.1007/s10098-021-02041-y

BELKADI, A. A., AGGOUN, S., AMOURI, C., GEUTTALA, A., & HOUARI, H. (2018). Effect of vegetable and synthetic fibers on mechanical performance and durability of Metakaolin-based mortars. Journal of Adhesion Science and Technology, 32(15), 1670–1686. https://doi.org/10.1080/01694243.2018.1442647

BENÍTEZ, A. N., MONZÓN, M. D., ANGULO, I., ORTEGA, Z., HERNÁNDEZ, P. M., & MARRERO, M. D. (2013). Treatment of banana fiber for use in the reinforcement of polymeric matrices. Measurement, 46(3), 1065–1073. https://doi.org/10.1016/J.MEASUREMENT.2012.11.021

BINICI, H., & AKSOGAN, O. (2017a). Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum. Materials Today Communications, 10, 14–24. https://doi.org/10.1016/J.MTCOMM.2016.09.004

BINICI, H., & AKSOGAN, O. (2017b). Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum. Materials Today Communications, 10, 14–24. https://doi.org/10.1016/J.MTCOMM.2016.09.004

CHATTAVIRIYA, P., SUPAWANTANAKUL, D., SANGSIRIMONGKOLYING, R., & SUA-IAM, G. (2022). Banana Fibers as a Sustainable Acoustic Absorbing Materials: A Review. Trends In Sciences, 19(11), 4498. https://doi.org/10.48048/tis.2022.4498

CHENRAYAN, V., GEBREMARYAM, G., SHAHAPURKAR, K., MANI, K., FOUAD, Y., KALAM, M. A., MUBARAK, N. M., SOUDAGAR, M. E. M., & ABUSAHMIN, B. S. (2023). Experimental and numerical assessment of the flexural response of banana fiber sandwich epoxy composite. Scientific Reports, 13(1), 18156. https://doi.org/10.1038/S41598-023-45460-1/FIGURES/15

FAOSTAT. (n.d.). FAOSTAT. Retrieved March 1, 2023, from https://www.fao.org/faostat/en/#data/QCL/visualize

GATANI, M., ARGÜELLO, R., & SESÍN, S. (2010). Materiales compuestos de cáscaras de maní y cemento. Influencia de diferentes tratamientos químicos sobre las propiedades mecánicas. Materiales de Construcción, 60(298), 137–147. https://doi.org/10.3989/MC.2010.46908

GIRIMURUGAN, R., SHILAJA, C., PRADEEP, G. M., MAHESKUMAR, P., & AUGASTIN SANTHIYAGU, I. (2022). An experimental study on compressive properties of high-density polyethylene-nano alumina-groundnut shell hybrid composites. Materials Today: Proceedings, 68(6), 2226–2232. https://doi.org/10.1016/J.MATPR.2022.08.437

GULER, C., COPUR, Y., & TASCIOGLU, C. (2008). The manufacture of particleboards using mixture of peanut hull (Arachis hypogaea L.) and European Black pine (Pinus nigra Arnold) wood chips. Bioresource Technology, 99(8), 2893–2897. https://doi.org/10.1016/J.BIORTECH.2007.06.013

IMMANUEL DURAI RAJ, J., ARUN VASANTHA GEETHAN, K., JOHN RAJAN, A., & VIJAY ANANTH, S. (2023). Characterization of epoxy resin-based banana fiber reinforced composite with waste CD powder filler. Materials Today: Proceedings, 90(1), 19-23. https://doi.org/10.1016/J.MATPR.2023.04.152

ISO 8302:1991 - Thermal insulation — Determination of steady-state thermal resistance and related properties — Guarded hot plate apparatus. (n.d.). Retrieved June 8, 2024, from https://www.iso.org/es/contents/data/standard/01/54/15422.html?browse=tc

JAYAPRABHA, J. S., BRAHMAKUMAR, M. & MANILAL, V. B. (2011). Banana Pseudostem Characterization and Its Fiber Property Evaluation on Physical and Bioextraction. Journal of Natural Fibers, 8(3), 149–160. https://doi.org/10.1080/15440478.2011.601614

KALANGI, C., ANTONY PRABU, D., SUJIN JOSE, A., & JANI, S. P. (2022). Experimental characterization of banana fiber reinforced polyester composites. Materials Today: Proceedings, 60(3), 2236–2239. https://doi.org/10.1016/J.MATPR.2022.03.232

KESIKIDOU, F., & STEFANIDOU, M. (2019). Natural fiber-reinforced mortars. Journal of Building Engineering, 25, 100786. https://doi.org/10.1016/j.jobe.2019.100786

KORNIEJENKO, K., FRĄCZEK, E., PYTLAK, E., & ADAMSKI, M. (2016). Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers. Procedia Engineering, 151, 388–393. https://doi.org/10.1016/J.PROENG.2016.07.395

KUMAR, P. S., PUSHPAVALLI, S., KERAN, D. A., SHUPRAJHAA, T., SIVANANTH, C., RENGANATHAN, R., KANDALLU JAYARAMAN, J., BALAKRISHNAN, P., & UMA, S. (2022). Deciphering functional characteristics and in-vitro bioactive properties of banana central core stem powder. Food Chemistry, 397, 133828. https://doi.org/10.1016/J.FOODCHEM.2022.133828

LAMICHHANE, N., LAMICHHANE, A., & GYAWALI, T. R. (2024). Enhancing mechanical properties of mortar with short and thin banana fibers: A sustainable alternative to synthetic fibers. Heliyon, 10(10), e30652. https://doi.org/10.1016/J.HELIYON.2024.E30652

LAVERDE, V., MARIN, A., BENJUMEA, J. M., & RINCÓN ORTIZ, M. (2022). Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Construction and Building Materials, 340, 127729. https://doi.org/10.1016/j.conbuildmat.2022.127729

MARTÍNEZ, C., & LAINES, J. (2013). POLIESTIRENO EXPANDIDO (EPS) Y SU PROBLEMÁTICA AMBIENTAL. Kuxulcab, Revista de Divulgación, 19(36), 63-. https://doi.org/10.19136/kuxulkab.a19n36.339

MENDES, C. O. B., & DE ARAÚJO NUNES, M. A. (2022). Acoustic performance of the banana pseudostem fiber. Applied Acoustics, 191, 108657. https://doi.org/10.1016/J.APACOUST.2022.108657

MO, K. H., BONG, C. S., ALENGARAM, U. J., JUMAAT, M. Z., & YAP, S. P. (2017). Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Construction and Building Materials, 130, 113–121. https://doi.org/10.1016/j.conbuildmat.2016.11.005

PREETHI, P., & MURTHY, B. G. (2013). Propriétés physiques et chimiques des fibres de banane extraites de cultivars commerciaux de bananes cultivés dans l'État du Tamilnadu, Agrotechnologie. https://doi.org/10.4172/2168-9881.S11-008

NGUYEN, T. A., & NGUYEN, T. H. (2021). Banana Fiber-Reinforced Epoxy Composites: Mechanical Properties and Fire Retardancy. International Journal of Chemical Engineering, 2021(1), 1973644. https://doi.org/10.1155/2021/1973644

OGUNSILE, B. O., & OLADEJI, T. G. (2016). Utilization of banana stalk fiber as reinforcement in low-density polyethylene composite, Revista Materia, 21(4), 953–963. https://doi.org/10.1590/S1517-707620160004.0088

POLETTO, M., DETTENBORN, J., ZENI, M., & ZATTERA, A. J. (2011). Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Management, 31(4), 779–784. https://doi.org/10.1016/J.WASMAN.2010.10.027

PRABHAKAR, M. N., SHAH, A. U. R., RAO, K. C., & SONG, J. IL. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16, 1119–1124. https://doi.org/10.1007/s12221-015-1119-1

PREM CHAND, R., RAVITEJ, Y. P., CHANDRASEKHAR, K. M., ADARSHA, H., SHIVAMANI KANTA, J. V., VEERACHARI, M., RAVI KUMAR, R., & ABHINANDAN. (2021). Characterization of banana and E glass fiber reinforced hybrid epoxy composites. Materials Today: Proceedings, 46(18), 9119–9125. https://doi.org/10.1016/J.MATPR.2021.05.402

RAMPRASATH, B., MURUGESAN, R., BANERJEE, A., ANAND, A., & SHASHANK. (2020). A Comparative Study of Sandwich and Hybrid Sandwich Composites using Jute and Kevlar Fibers. IOP Conference Series: Materials Science and Engineering, 912(5), 052031. https://doi.org/10.1088/1757-899X/912/5/052031

RAMU, S., SENTHILKUMAR, N., & DEEPANRAJ, B. (2023). Experimental investigation on alkali-treated (NaOH) groundnut shell (Arachis hypogaea L.) and rick husk (Oryza sativa) particle epoxy hybrid composites. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.03.171

SADA, B. H., AMARTEY, Y. D., & BAKOC, S. (2013). An Investigation into the use of groundnut as fine aggregate replacement. Nigerian Journal of Technology, 32(1), 54–60. https://www.ajol.info/index.php/njt/article/view/87225

SARAVANAN, A. K., RAJENDRA PRASAD, A., MURUGANANDAM, D., SARAVANAN, G., VIVEKANANDAN, S., & SUDHAKAR, M. (2020). Study on natural fiber composites of jute, pineapple and banana compositions percentage of weight basis for thermal resistance and thermal conductivity. Materials Today: Proceedings, 37(2), 147–151. https://doi.org/10.1016/J.MATPR.2020.04.662

SATHIPARAN, N., ANBURUVEL, A., & SELVAM, V. V. (2023). Utilization of agro-waste groundnut shell and its derivatives in sustainable construction and building materials – A review. Journal of Building Engineering, 66, 105866. https://doi.org/10.1016/J.JOBE.2023.105866

SEGURA, D., NOGUEZ, R., & ESPÍN, G. (2007). Contaminación ambiental y bacterias productoras de plásticos biodegradables. Biotecnología, 14, 361-371. https://www.researchgate.net/profile/Raul-Noguez/publication/242144167_Contaminacion_ambiental_y_bacterias_productoras_de_plasticos_biodegradables/links/565cc57f08aefe619b253fd3/Contaminacion-ambiental-y-bacterias-productoras-de-plasticos-biodegradables.pdf

SENTHILKUMAR, K., SIVA, I., RAJINI, N., WINOWLIN JAPPES, J. T., & SIENGCHIN, S. (2018). Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application. Sustainable Composites for Aerospace Applications, 35–53. https://doi.org/10.1016/B978-0-08-102131-6.00003-7

UNE 56535:1977. (2017, Retrieved June 8. 2024,). Características físico-mecánicas de la madera. Determinación de la resistencia a la compresión axial., from https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0006021

UNE-EN 196-1:2018. (2018, Retrieved June 8, 2024). Métodos de ensayo de cementos. Parte 1: Determinación de resistencias. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0060675

UNE-EN 310:1994 (2019, Retrieved June 8, 2024). Tableros derivados de la madera. Determinación del módulo de elasticidad en flexión y de la resistencia a la flexión. (Versión oficial EN 310:1993). https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0008516

WONGSA, A., KUNTHAWATWONG, R., NAENUDON, S., SATA, V., & CHINDAPRASIRt, P. (2020). Natural fiber-reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241, 118143. https://doi.org/10.1016/J.CONBUILDMAT.2020.118143

ZAABA, N. F., & ISMAIL, H. (2018). A Review on Peanut Shell Powder Reinforced Polymer Composites. 58(4), 349–365. https://doi.org/10.1080/03602559.2018.1471720

ZOUAOUI, Y., BENMAHIDDINE, F., YAHIA, A., & BELARBI, R. (2021). Hygrothermal and Mechanical Behaviors of Fiber Mortar: Comparative Study between Palm and Hemp Fibers. Energies, 14(21), 7110. https://doi.org/10.3390/en1421711

Publicado

2024-12-29

Cómo citar

Echeverría-Maggi, E. E., Flores-Alés, V., & Martín-del-Río, J. J. (2024). Biocompuesto de fibra de bananeira, cáscara de amendoim de Manabí (Ecuador) y poliestireno expandido reciclado. Hábitat Sustentable, 14(2), 112–121. https://doi.org/10.22320/07190700.2024.14.02.09

Número

Sección

Artículos