Energía solar fotovoltaica en viviendas familiares: estudio bibliométrico de temas explorados, tendencias y retos
DOI:
https://doi.org/10.22320/07190700.2025.15.01.06Palabras clave:
Energía solar, tecnología fotovoltaica, viviendas familiares, sostenibilidadResumen
Este estudio analiza la evolución científica sobre energía solar fotovoltaica en viviendas familiares mediante un análisis bibliométrico basado en Scopus y herramientas como Bibliometrix y VOSviewer. Se examinaron 414 documentos publicados entre los años 2000 y 2024, se aplicó un enfoque cuantitativo y técnicas de visualización de redes. Los hallazgos evidencian un crecimiento sostenido desde el año 2008 y un auge desde 2016, impulsado por el interés global en energías renovables. Las principales contribuciones provienen de áreas como energía, ingeniería y ciencias ambientales, consolidándose "Applied Energy" y "Energies" como revistas clave. Conceptos como "solar energy" y "energy efficiency" dominan el campo, destacándose temas motores como almacenamiento de energía e integración de redes inteligentes, y emergentes como simulaciones energéticas. Se recomienda ampliar las fuentes de datos y explorar enfoques comparativos para mejorar la comprensión de los factores que afectan la adopción de esta tecnología.
Descargas
Citas
ALBATAYNEH, A., JUAIDI, A., ABDALLAH, R., y MANZANO-AGUGLIARO, F. (2021). Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings. Energies, 14(17), 5446. https://doi.org/10.3390/en14175446 DOI: https://doi.org/10.3390/en14175446
ALBATAYNEH, A., ALBADAINEH, R., JUAIDI, A., ABDALLAH, R., ZABALO, A., y MANZANO-AGUGLIARO, F. (2022). Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone. Sustainability, 14(24), 17040. https://doi.org/10.3390/su142417040 DOI: https://doi.org/10.3390/su142417040
ALI YILDIRIM, M., BARTYZEL, F., VALLATI, A., WOŹNIAK, M. K., y OCŁOŃ, P. (2023). Efficient energy storage in residential buildings integrated with RESHeat system. Applied Energy, 335, 120752. https://doi.org/10.1016/j.apenergy.2023.120752 DOI: https://doi.org/10.1016/j.apenergy.2023.120752
ALQAHTANI, N., y BALTA-OZKAN, N. (2021). Assessment of rooftop solar power generation to meet residential loads in the city of neom, Saudi Arabia. Energies, 14(13), 3805. https://doi.org/10.3390/en14133805 DOI: https://doi.org/10.3390/en14133805
ALRASHED, F., y ASIF, M. (2014). Trends in Residential Energy Consumption in Saudi Arabia with Particular Reference to the Eastern Province. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(4), 376–387. https://doi.org/10.13044/j.sdewes.2014.02.0030 DOI: https://doi.org/10.13044/j.sdewes.2014.02.0030
ARIA, M., y CUCCURULLO, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
BAKTHAVATCHALAM, B., HABIB, K., SAIDUR, R., y SAHA, B. B. (2022). Cooling performance analysis of nanofluid assisted novel photovoltaic thermoelectric air conditioner for energy efficient buildings. Applied Thermal Engineering, 213, 118691. https://doi.org/10.1016/j.applthermaleng.2022.118691 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118691
BANDARU, S., BECERRA, V., KHANNA, S., RADULOVIC, J., HUTCHINSON, D., y KHUSAINOV, R. (2021). A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities. Energies, 14(13),3853. https://doi.org/10.3390/en14133853 DOI: https://doi.org/10.3390/en14133853
BAYER, D. R., y PRUCKNER, M. (2024). Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability. Applied Energy, 373, 123823. https://doi.org/10.1016/j.apenergy.2024.123823 DOI: https://doi.org/10.1016/j.apenergy.2024.123823
BEHZADI, A., ALIRAHMI, S. M., YU, H., y SADRIZADEH, S. (2023). An efficient renewable hybridization based on hydrogen storage for peak demand reduction: A rule-based energy control and optimization using machine learning techniques. Journal of Energy Storage, 57, 106168. https://doi.org/10.1016/j.est.2022.106168 DOI: https://doi.org/10.1016/j.est.2022.106168
BURNHAM, J. F. (2006). Scopus database: A review. Biomedical Digital Libraries, 3(1). https://doi.org/10.1186/1742-5581-3-1 DOI: https://doi.org/10.1186/1742-5581-3-1
CALISE, F., FIGAJ, R. D., y VANOLI, L. (2017). A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis. Energy Conversion and Management, 149, 798–814. https://doi.org/10.1016/j.enconman.2017.03.027 DOI: https://doi.org/10.1016/j.enconman.2017.03.027
CEREZO-NARVÁEZ, A., PIÑERO-VILELA, J.-M., RODRÍGUEZ-JARA, E.-Á., OTERO-MATEO, M., PASTOR-FERNÁNDEZ, A., y BALLESTEROS-PÉREZ, P. (2021). Energy, emissions and economic impact of the new nZEB regulatory framework on residential buildings renovation: Case study in southern Spain. Journal of Building Engineering, 42, 103054. https://doi.org/10.1016/j.jobe.2021.103054 DOI: https://doi.org/10.1016/j.jobe.2021.103054
CILLARI, G., FRANCO, A., y FANTOZZI, F. (2021). Sizing strategies of photovoltaic systems in nZEB schemes to maximize the self-consumption share. Energy Reports, 7, 6769–6785. https://doi.org/10.1016/j.egyr.2021.09.117 DOI: https://doi.org/10.1016/j.egyr.2021.09.117
CONSTANTINIDES, A., KATAFYGIOTOU, M., DIMOPOULOS, T., y KAPELLAKIS, I. (2024). Retrofitting of an Existing Cultural Hall into a Net-Zero Energy Building. Energies, 17(7), 1602. https://doi.org/10.3390/en17071602 DOI: https://doi.org/10.3390/en17071602
D’AGOSTINO, D., PARKER, D., MELIÀ, P., y DOTELLI, G. (2022). Optimizing photovoltaic electric generation and roof insulation in existing residential buildings. Energy and Buildings, 255, 111652. https://doi.org/10.1016/j.enbuild.2021.111652 DOI: https://doi.org/10.1016/j.enbuild.2021.111652
DE SOTO, W., KLEIN, S. A., y BECKMAN, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80(1), 78–88. https://doi.org/10.1016/j.solener.2005.06.010 DOI: https://doi.org/10.1016/j.solener.2005.06.010
FINA, B., ROBERTS, M. B., AUER, H., BRUCE, A., y MACGILL, I. (2021). Exogenous influences on deployment and profitability of photovoltaics for self-consumption in multi-apartment buildings in Australia and Austria. Applied Energy, 283, 116309. https://doi.org/10.1016/j.apenergy.2020.116309 DOI: https://doi.org/10.1016/j.apenergy.2020.116309
FORROUSSO, S., IDRISSI KAITOUNI, S., MANA, A., WAKIL, M., JAMIL, A., BRIGUI, J., y AZZOUZI, H. (2024). Optimal sizing of off-grid microgrid building-integrated-photovoltaic system with battery for a net zero energy residential building in different climates of Morocco. Results in Engineering, 22, 102288. https://doi.org/10.1016/j.rineng.2024.102288 DOI: https://doi.org/10.1016/j.rineng.2024.102288
GALLEGO-CASTILLO, C., HELENO, M., y VICTORIA, M. (2021). Self-consumption for energy communities in Spain: A regional analysis under the new legal framework. Energy Policy, 150, 112144. https://doi.org/10.1016/j.enpol.2021.112144 DOI: https://doi.org/10.1016/j.enpol.2021.112144
GAMALELDINE, M., y CORVACHO, H. (2022). Compliance with Building Energy Code for the Residential Sector in Egyptian Hot-Arid Climate: Potential Impact, Difficulties, and Further Improvements. Sustainability, 14(7), 3936. https://doi.org/10.3390/su14073936 DOI: https://doi.org/10.3390/su14073936
GARCÍA-GÁFARO, C., ESCUDERO-REVILLA, C., FLORES-ABASCAL, I., HIDALGO-BETANZOS, J. M., y ERKOREKA-GONZÁLEZ, A. (2022). A photovoltaic forced ventilated façade (PV-FVF) as heat source for a heat pump: Assessing its energetical profit in nZEB buildings. Energy and Buildings, 261, 111979. https://doi.org/10.1016/j.enbuild.2022.111979 DOI: https://doi.org/10.1016/j.enbuild.2022.111979
HAMED BANIRAZI MOTLAGH, S., AMIN HOSSEINI, S. M., y PONS-VALLADARES, O. (2023). Integrated value model for sustainability assessment of residential solar energy systems towards minimizing urban air pollution in Tehran. Solar Energy, 249, 40–66. https://doi.org/10.1016/j.solener.2022.10.047 DOI: https://doi.org/10.1016/j.solener.2022.10.047
HEINZ, A., y RIEBERER, R. (2021). Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system. Applied Energy, 293, 116953. https://doi.org/10.1016/j.apenergy.2021.116953 DOI: https://doi.org/10.1016/j.apenergy.2021.116953
HERRANDO, M., COCA-ORTEGÓN, A., GUEDEA, I., y FUEYO, N. (2023). Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings. Renewable and Sustainable Energy Reviews, 178, 113233. https://doi.org/10.1016/j.rser.2023.113233 DOI: https://doi.org/10.1016/j.rser.2023.113233
HU, X., XIANG, Y., ZHANG, H., LIN, Q., WANG, W., y WANG, H. (2021). Active–passive combined energy-efficient retrofit of rural residence with non-benchmarked construction: A case study in Shandong province, China. Energy Reports, 7, 1360–1373. https://doi.org/10.1016/j.egyr.2021.02.045 DOI: https://doi.org/10.1016/j.egyr.2021.02.045
JOHARI, F., LINDBERG, O., RAMADHANI, U. H., SHADRAM, F., MUNKHAMMAR, J., y WIDÉN, J. (2024). Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM. Applied Energy, 361, 122937. https://doi.org/10.1016/j.apenergy.2024.122937 DOI: https://doi.org/10.1016/j.apenergy.2024.122937
LIU, J., CHEN, X., YANG, H., y SHAN, K. (2021a). Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage. Applied Energy, 290, 116733. https://doi.org/10.1016/j.apenergy.2021.116733 DOI: https://doi.org/10.1016/j.apenergy.2021.116733
LIU, J., YANG, H., y ZHOU, Y. (2021b). Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage. Applied Energy, 298, 117206. https://doi.org/10.1016/j.apenergy.2021.117206 DOI: https://doi.org/10.1016/j.apenergy.2021.117206
MAGHRABIE, H. M., ELSAID, K., SAYED, E. T., ABDELKAREEM, M. A., WILBERFORCE, T., y OLABI, A. G. (2021). Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges. Sustainable Energy Technologies and Assessments, 45, 101151. https://doi.org/10.1016/j.seta.2021.101151 DOI: https://doi.org/10.1016/j.seta.2021.101151
MASCHERBAUER, P., KRANZL, L., YU, S., y HAUPT, T. (2022). Investigating the impact of smart energy management system on the residential electricity consumption in Austria. Energy, 249, 123665. https://doi.org/10.1016/j.energy.2022.123665 DOI: https://doi.org/10.1016/j.energy.2022.123665
MASIP, X., FUSTER-PALOP, E., PRADES-GIL, C., VIANA-FONS, J. D., PAYÁ, J., y NAVARRO-PERIS, E. (2023). Case study of electric and DHW energy communities in a Mediterranean district. Renewable and Sustainable Energy Reviews, 178, 113234. https://doi.org/10.1016/j.rser.2023.113234 DOI: https://doi.org/10.1016/j.rser.2023.113234
MONNA, S., ABDALLAH, R., JUAIDI, A., ALBATAYNEH, A., ZAPATA-SIERRA, A. J., y MANZANO-AGUGLIARO, F. (2022). Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation. Energies, 15(2), 496. https://doi.org/10.3390/en15020496 DOI: https://doi.org/10.3390/en15020496
MUSTAFA, J., ALMEHMADI, F. A., ALQAED, S., y SHARIFPUR, M. (2022). Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities. Sustainability, 14(21), 13792. https://doi.org/10.3390/su142113792 DOI: https://doi.org/10.3390/su142113792
NEMATCHOUA, M. K., MARIE-REINE NISHIMWE, A., y REITER, S. (2021). Towards nearly zero-energy residential neighbourhoods in the European Union: A case study. Renewable and Sustainable Energy Reviews, 135, 110198. https://doi.org/10.1016/j.rser.2020.110198 DOI: https://doi.org/10.1016/j.rser.2020.110198
NEVES, R., CHO, H., y ZHANG, J. (2021). Pairing geothermal technology and solar photovoltaics for net-zero energy homes. Renewable and Sustainable Energy Reviews, 140, 110749. https://doi.org/10.1016/j.rser.2021.110749 DOI: https://doi.org/10.1016/j.rser.2021.110749
NORDGÅRD-HANSEN, E., KISHOR, N., MIDTTØMME, K., RISINGGÅRD, V. K., y KOCBACH, J. (2022). Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump. Applied Energy, 308, 118370. https://doi.org/10.1016/j.apenergy.2021.118370 DOI: https://doi.org/10.1016/j.apenergy.2021.118370
NYKYRI, M., KÄRKKÄINEN, T. J., LEVIKARI, S., HONKAPURO, S., ANNALA, S., y SILVENTOINEN, P. (2022). Blockchain-based balance settlement ledger for energy communities in open electricity markets. Energy, 253, 124180. https://doi.org/10.1016/j.energy.2022.124180 DOI: https://doi.org/10.1016/j.energy.2022.124180
OLLAS, P., THIRINGER, T., y PERSSON, M. (2024). Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design. Energies, 17(13), 3105. https://doi.org/10.3390/en17133105 DOI: https://doi.org/10.3390/en17133105
PADOVANI, F., SOMMERFELDT, N., LONGOBARDI, F., y PEARCE, J. M. (2021). Decarbonizing rural residential buildings in cold climates: A techno-economic analysis of heating electrification. Energy and Buildings, 250, 111284. https://doi.org/10.1016/j.enbuild.2021.111284 DOI: https://doi.org/10.1016/j.enbuild.2021.111284
PSIMOPOULOS, E., BEE, E., WIDÉN, J., y BALES, C. (2019). Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system. Applied Energy, 249, 355–367. https://doi.org/10.1016/j.apenergy.2019.04.080 DOI: https://doi.org/10.1016/j.apenergy.2019.04.080
RAMADHANI, U. H., JOHARI, F., LINDBERG, O., MUNKHAMMAR, J., y WIDÉN, J. (2024). A city-level assessment of residential PV hosting capacity for low-voltage distribution systems considering rooftop data and uncertainties. Applied Energy, 371, 123715. https://doi.org/10.1016/j.apenergy.2024.123715 DOI: https://doi.org/10.1016/j.apenergy.2024.123715
RINALDI, A., SOINI, M. C., STREICHER, K., PATEL, M. K., y PARRA, D. (2021). Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation. Applied Energy, 282, 116110. https://doi.org/10.1016/j.apenergy.2020.116110 DOI: https://doi.org/10.1016/j.apenergy.2020.116110
SADEGHIBAKHTIAR, E., NAEIMI, A., NADERI, S., PIGNATTA, G., y BEHBAHANINIA, A. (2024). Size optimization of a stand-alone solar-wind-battery hybrid system for net zero energy buildings: A case study. Energy and Buildings, 313, 114204. https://doi.org/10.1016/j.enbuild.2024.114204 DOI: https://doi.org/10.1016/j.enbuild.2024.114204
SALPAKARI, J., y LUND, P. (2016). Optimal and rule-based control strategies for energy flexibility in buildings with PV. Applied Energy, 161, 425–436. https://doi.org/10.1016/j.apenergy.2015.10.036 DOI: https://doi.org/10.1016/j.apenergy.2015.10.036
SARKER, M., HARAM, M., RAMASAMY, G., FARID, F., y MANSOR, S. (2023). Solar Photovoltaic Home Systems in Malaysia: A Comprehensive Review and Analysis. Energies, 16(23), 7718. https://doi.org/10.3390/en16237718 DOI: https://doi.org/10.3390/en16237718
SARTORI, I., NAPOLITANO, A., y VOSS, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. https://doi.org/10.1016/j.enbuild.2012.01.032 DOI: https://doi.org/10.1016/j.enbuild.2012.01.032
SHABBIR, N., KUTT, L., ASTAPOV, V., JAWAD, M., ALLIK, A., y HUSEV, O. (2022). Battery Size Optimization with Customer PV Installations and Domestic Load Profile. IEEE Access, 10, 13012–13025. https://doi.org/10.1109/ACCESS.2022.3147977 DOI: https://doi.org/10.1109/ACCESS.2022.3147977
SOHANI, A., CORNARO, C., SHAHVERDIAN, M. H., MOSER, D., PIERRO, M., OLABI, A. G., KARIMI, N., NIŽETIĆ, S., LI, L. K. B., y DORANEHGARD, M. H. (2023). Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building. Applied Energy, 331, 120391. https://doi.org/10.1016/j.apenergy.2022.120391 DOI: https://doi.org/10.1016/j.apenergy.2022.120391
SOOMAR, A., HAKEEM, A., MESSAOUDI, M., MUSZNICKI, P., IQBAL, A., y CZAPP, S. (2022). Solar Photovoltaic Energy Optimization and Challenges. Frontiers in Energy Research 10, 879985. https://doi.org/10.3389/fenrg.2022.879985 DOI: https://doi.org/10.3389/fenrg.2022.879985
TAWALBEH, M., AL-OTHMAN, A., KAFIAH, F., ABDELSALAM, E., ALMOMANI, F., y ALKASRAWI, M. (2020). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528. https://doi.org/10.1016/j.scitotenv.2020.143528 DOI: https://doi.org/10.1016/j.scitotenv.2020.143528
VAHABI KHAH, M., ZAHEDI, R., ESKANDARPANAH, R., MIRZAEI, A. M., FARAHANI, O. N., MALEK, I., y REZAEI, N. (2023). Optimal sizing of residential photovoltaic and battery system connected to the power grid based on the cost of energy and peak load. Heliyon, 9(3), e14414. https://doi.org/10.1016/j.heliyon.2023.e14414 DOI: https://doi.org/10.1016/j.heliyon.2023.e14414
WU, H., DENG, F., y TAN, H. (2022). Research on parametric design method of solar photovoltaic utilization potential of nearly zero-energy high-rise residential building based on genetic algorithm. Journal of Cleaner Production, 368, 133169. https://doi.org/10.1016/j.jclepro.2022.133169 DOI: https://doi.org/10.1016/j.jclepro.2022.133169
XUE, Y., LINDKVIST, C. M., y TEMELJOTOV-SALAJ, A. (2021). Barriers and potential solutions to the diffusion of solar photovoltaics from the public-private-people partnership perspective – Case study of Norway. Renewable and Sustainable Energy Reviews, 137, 110636. https://doi.org/10.1016/j.rser.2020.110636 DOI: https://doi.org/10.1016/j.rser.2020.110636
ZABOLI, A., KASIMALLA, S. R., PARK, K., HONG, Y., y HONG, J. (2024). A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies. Energies, 17(11), 2534. https://doi.org/10.3390/en17112534 DOI: https://doi.org/10.3390/en17112534
ZUPIC, I., y ČATER, T. (2014). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Amelia Eunice Maldonado-Lozano, Jhonny Gárate-Ríos, Magda Ushiñahua-Ushiñahua, Gladis Maribel Heredia-Baca, Gabriela del Pilar Palomino-Alvarado, Luis Paredes-Aguilar

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
El contenido de los artículos que se publican en cada número de Hábitat Sustentable, es responsabilidad exclusiva de los autores y no representan necesariamente el pensamiento ni comprometen la opinión de la Universidad del Bío-Bío.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC BY-SA que permite a otros compartir-copiar, transformar o crear nuevo material a partir de esta obra con fines no comerciales, siempre y cuando se reconozcan la autoría y la primera publicación en esta revista, y sus nuevas creaciones estén bajo una licencia con los mismos términos.