Solar photovoltaic energy in family dwellings: a bibliometric study of issues explored, trends, and challenges
DOI:
https://doi.org/10.22320/07190700.2025.15.01.06Keywords:
Solar energy, photovoltaic technology, family housing, sustainabilityAbstract
This study analyzes the scientific evolution of solar photovoltaic energy in family dwellings using a bibliometric analysis based on Scopus and tools such as Bibliometrix and VOSviewer. 414 papers published between 2000 and 2024 were reviewed, employing a quantitative approach and network visualization techniques. The findings indicate sustained growth since 2008 and a notable surge since 2016, driven by global interest in renewable energies. The main contributions come from energy, engineering, and environmental sciences, with “Applied Energy” and “Energies” consolidated as key journals. Concepts such as “solar energy” and “energy efficiency” dominate the field, with topics like energy storage and smart grid integration standing out, as well as emerging areas like energy simulations. It is recommended that data sources be expanded and comparative approaches be explored to improve the understanding of the factors influencing the adoption of this technology.
Downloads
References
ALBATAYNEH, A., JUAIDI, A., ABDALLAH, R., y MANZANO-AGUGLIARO, F. (2021). Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings. Energies, 14(17), 5446. https://doi.org/10.3390/en14175446 DOI: https://doi.org/10.3390/en14175446
ALBATAYNEH, A., ALBADAINEH, R., JUAIDI, A., ABDALLAH, R., ZABALO, A., y MANZANO-AGUGLIARO, F. (2022). Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone. Sustainability, 14(24), 17040. https://doi.org/10.3390/su142417040 DOI: https://doi.org/10.3390/su142417040
ALI YILDIRIM, M., BARTYZEL, F., VALLATI, A., WOŹNIAK, M. K., y OCŁOŃ, P. (2023). Efficient energy storage in residential buildings integrated with RESHeat system. Applied Energy, 335, 120752. https://doi.org/10.1016/j.apenergy.2023.120752 DOI: https://doi.org/10.1016/j.apenergy.2023.120752
ALQAHTANI, N., y BALTA-OZKAN, N. (2021). Assessment of rooftop solar power generation to meet residential loads in the city of neom, Saudi Arabia. Energies, 14(13), 3805. https://doi.org/10.3390/en14133805 DOI: https://doi.org/10.3390/en14133805
ALRASHED, F., y ASIF, M. (2014). Trends in Residential Energy Consumption in Saudi Arabia with Particular Reference to the Eastern Province. Journal of Sustainable Development of Energy, Water and Environment Systems, 2(4), 376–387. https://doi.org/10.13044/j.sdewes.2014.02.0030 DOI: https://doi.org/10.13044/j.sdewes.2014.02.0030
ARIA, M., y CUCCURULLO, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
BAKTHAVATCHALAM, B., HABIB, K., SAIDUR, R., y SAHA, B. B. (2022). Cooling performance analysis of nanofluid assisted novel photovoltaic thermoelectric air conditioner for energy efficient buildings. Applied Thermal Engineering, 213, 118691. https://doi.org/10.1016/j.applthermaleng.2022.118691 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118691
BANDARU, S., BECERRA, V., KHANNA, S., RADULOVIC, J., HUTCHINSON, D., y KHUSAINOV, R. (2021). A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities. Energies, 14(13),3853. https://doi.org/10.3390/en14133853 DOI: https://doi.org/10.3390/en14133853
BAYER, D. R., y PRUCKNER, M. (2024). Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability. Applied Energy, 373, 123823. https://doi.org/10.1016/j.apenergy.2024.123823 DOI: https://doi.org/10.1016/j.apenergy.2024.123823
BEHZADI, A., ALIRAHMI, S. M., YU, H., y SADRIZADEH, S. (2023). An efficient renewable hybridization based on hydrogen storage for peak demand reduction: A rule-based energy control and optimization using machine learning techniques. Journal of Energy Storage, 57, 106168. https://doi.org/10.1016/j.est.2022.106168 DOI: https://doi.org/10.1016/j.est.2022.106168
BURNHAM, J. F. (2006). Scopus database: A review. Biomedical Digital Libraries, 3(1). https://doi.org/10.1186/1742-5581-3-1 DOI: https://doi.org/10.1186/1742-5581-3-1
CALISE, F., FIGAJ, R. D., y VANOLI, L. (2017). A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis. Energy Conversion and Management, 149, 798–814. https://doi.org/10.1016/j.enconman.2017.03.027 DOI: https://doi.org/10.1016/j.enconman.2017.03.027
CEREZO-NARVÁEZ, A., PIÑERO-VILELA, J.-M., RODRÍGUEZ-JARA, E.-Á., OTERO-MATEO, M., PASTOR-FERNÁNDEZ, A., y BALLESTEROS-PÉREZ, P. (2021). Energy, emissions and economic impact of the new nZEB regulatory framework on residential buildings renovation: Case study in southern Spain. Journal of Building Engineering, 42, 103054. https://doi.org/10.1016/j.jobe.2021.103054 DOI: https://doi.org/10.1016/j.jobe.2021.103054
CILLARI, G., FRANCO, A., y FANTOZZI, F. (2021). Sizing strategies of photovoltaic systems in nZEB schemes to maximize the self-consumption share. Energy Reports, 7, 6769–6785. https://doi.org/10.1016/j.egyr.2021.09.117 DOI: https://doi.org/10.1016/j.egyr.2021.09.117
CONSTANTINIDES, A., KATAFYGIOTOU, M., DIMOPOULOS, T., y KAPELLAKIS, I. (2024). Retrofitting of an Existing Cultural Hall into a Net-Zero Energy Building. Energies, 17(7), 1602. https://doi.org/10.3390/en17071602 DOI: https://doi.org/10.3390/en17071602
D’AGOSTINO, D., PARKER, D., MELIÀ, P., y DOTELLI, G. (2022). Optimizing photovoltaic electric generation and roof insulation in existing residential buildings. Energy and Buildings, 255, 111652. https://doi.org/10.1016/j.enbuild.2021.111652 DOI: https://doi.org/10.1016/j.enbuild.2021.111652
DE SOTO, W., KLEIN, S. A., y BECKMAN, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80(1), 78–88. https://doi.org/10.1016/j.solener.2005.06.010 DOI: https://doi.org/10.1016/j.solener.2005.06.010
FINA, B., ROBERTS, M. B., AUER, H., BRUCE, A., y MACGILL, I. (2021). Exogenous influences on deployment and profitability of photovoltaics for self-consumption in multi-apartment buildings in Australia and Austria. Applied Energy, 283, 116309. https://doi.org/10.1016/j.apenergy.2020.116309 DOI: https://doi.org/10.1016/j.apenergy.2020.116309
FORROUSSO, S., IDRISSI KAITOUNI, S., MANA, A., WAKIL, M., JAMIL, A., BRIGUI, J., y AZZOUZI, H. (2024). Optimal sizing of off-grid microgrid building-integrated-photovoltaic system with battery for a net zero energy residential building in different climates of Morocco. Results in Engineering, 22, 102288. https://doi.org/10.1016/j.rineng.2024.102288 DOI: https://doi.org/10.1016/j.rineng.2024.102288
GALLEGO-CASTILLO, C., HELENO, M., y VICTORIA, M. (2021). Self-consumption for energy communities in Spain: A regional analysis under the new legal framework. Energy Policy, 150, 112144. https://doi.org/10.1016/j.enpol.2021.112144 DOI: https://doi.org/10.1016/j.enpol.2021.112144
GAMALELDINE, M., y CORVACHO, H. (2022). Compliance with Building Energy Code for the Residential Sector in Egyptian Hot-Arid Climate: Potential Impact, Difficulties, and Further Improvements. Sustainability, 14(7), 3936. https://doi.org/10.3390/su14073936 DOI: https://doi.org/10.3390/su14073936
GARCÍA-GÁFARO, C., ESCUDERO-REVILLA, C., FLORES-ABASCAL, I., HIDALGO-BETANZOS, J. M., y ERKOREKA-GONZÁLEZ, A. (2022). A photovoltaic forced ventilated façade (PV-FVF) as heat source for a heat pump: Assessing its energetical profit in nZEB buildings. Energy and Buildings, 261, 111979. https://doi.org/10.1016/j.enbuild.2022.111979 DOI: https://doi.org/10.1016/j.enbuild.2022.111979
HAMED BANIRAZI MOTLAGH, S., AMIN HOSSEINI, S. M., y PONS-VALLADARES, O. (2023). Integrated value model for sustainability assessment of residential solar energy systems towards minimizing urban air pollution in Tehran. Solar Energy, 249, 40–66. https://doi.org/10.1016/j.solener.2022.10.047 DOI: https://doi.org/10.1016/j.solener.2022.10.047
HEINZ, A., y RIEBERER, R. (2021). Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system. Applied Energy, 293, 116953. https://doi.org/10.1016/j.apenergy.2021.116953 DOI: https://doi.org/10.1016/j.apenergy.2021.116953
HERRANDO, M., COCA-ORTEGÓN, A., GUEDEA, I., y FUEYO, N. (2023). Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings. Renewable and Sustainable Energy Reviews, 178, 113233. https://doi.org/10.1016/j.rser.2023.113233 DOI: https://doi.org/10.1016/j.rser.2023.113233
HU, X., XIANG, Y., ZHANG, H., LIN, Q., WANG, W., y WANG, H. (2021). Active–passive combined energy-efficient retrofit of rural residence with non-benchmarked construction: A case study in Shandong province, China. Energy Reports, 7, 1360–1373. https://doi.org/10.1016/j.egyr.2021.02.045 DOI: https://doi.org/10.1016/j.egyr.2021.02.045
JOHARI, F., LINDBERG, O., RAMADHANI, U. H., SHADRAM, F., MUNKHAMMAR, J., y WIDÉN, J. (2024). Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM. Applied Energy, 361, 122937. https://doi.org/10.1016/j.apenergy.2024.122937 DOI: https://doi.org/10.1016/j.apenergy.2024.122937
LIU, J., CHEN, X., YANG, H., y SHAN, K. (2021a). Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage. Applied Energy, 290, 116733. https://doi.org/10.1016/j.apenergy.2021.116733 DOI: https://doi.org/10.1016/j.apenergy.2021.116733
LIU, J., YANG, H., y ZHOU, Y. (2021b). Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage. Applied Energy, 298, 117206. https://doi.org/10.1016/j.apenergy.2021.117206 DOI: https://doi.org/10.1016/j.apenergy.2021.117206
MAGHRABIE, H. M., ELSAID, K., SAYED, E. T., ABDELKAREEM, M. A., WILBERFORCE, T., y OLABI, A. G. (2021). Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges. Sustainable Energy Technologies and Assessments, 45, 101151. https://doi.org/10.1016/j.seta.2021.101151 DOI: https://doi.org/10.1016/j.seta.2021.101151
MASCHERBAUER, P., KRANZL, L., YU, S., y HAUPT, T. (2022). Investigating the impact of smart energy management system on the residential electricity consumption in Austria. Energy, 249, 123665. https://doi.org/10.1016/j.energy.2022.123665 DOI: https://doi.org/10.1016/j.energy.2022.123665
MASIP, X., FUSTER-PALOP, E., PRADES-GIL, C., VIANA-FONS, J. D., PAYÁ, J., y NAVARRO-PERIS, E. (2023). Case study of electric and DHW energy communities in a Mediterranean district. Renewable and Sustainable Energy Reviews, 178, 113234. https://doi.org/10.1016/j.rser.2023.113234 DOI: https://doi.org/10.1016/j.rser.2023.113234
MONNA, S., ABDALLAH, R., JUAIDI, A., ALBATAYNEH, A., ZAPATA-SIERRA, A. J., y MANZANO-AGUGLIARO, F. (2022). Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation. Energies, 15(2), 496. https://doi.org/10.3390/en15020496 DOI: https://doi.org/10.3390/en15020496
MUSTAFA, J., ALMEHMADI, F. A., ALQAED, S., y SHARIFPUR, M. (2022). Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities. Sustainability, 14(21), 13792. https://doi.org/10.3390/su142113792 DOI: https://doi.org/10.3390/su142113792
NEMATCHOUA, M. K., MARIE-REINE NISHIMWE, A., y REITER, S. (2021). Towards nearly zero-energy residential neighbourhoods in the European Union: A case study. Renewable and Sustainable Energy Reviews, 135, 110198. https://doi.org/10.1016/j.rser.2020.110198 DOI: https://doi.org/10.1016/j.rser.2020.110198
NEVES, R., CHO, H., y ZHANG, J. (2021). Pairing geothermal technology and solar photovoltaics for net-zero energy homes. Renewable and Sustainable Energy Reviews, 140, 110749. https://doi.org/10.1016/j.rser.2021.110749 DOI: https://doi.org/10.1016/j.rser.2021.110749
NORDGÅRD-HANSEN, E., KISHOR, N., MIDTTØMME, K., RISINGGÅRD, V. K., y KOCBACH, J. (2022). Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump. Applied Energy, 308, 118370. https://doi.org/10.1016/j.apenergy.2021.118370 DOI: https://doi.org/10.1016/j.apenergy.2021.118370
NYKYRI, M., KÄRKKÄINEN, T. J., LEVIKARI, S., HONKAPURO, S., ANNALA, S., y SILVENTOINEN, P. (2022). Blockchain-based balance settlement ledger for energy communities in open electricity markets. Energy, 253, 124180. https://doi.org/10.1016/j.energy.2022.124180 DOI: https://doi.org/10.1016/j.energy.2022.124180
OLLAS, P., THIRINGER, T., y PERSSON, M. (2024). Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design. Energies, 17(13), 3105. https://doi.org/10.3390/en17133105 DOI: https://doi.org/10.3390/en17133105
PADOVANI, F., SOMMERFELDT, N., LONGOBARDI, F., y PEARCE, J. M. (2021). Decarbonizing rural residential buildings in cold climates: A techno-economic analysis of heating electrification. Energy and Buildings, 250, 111284. https://doi.org/10.1016/j.enbuild.2021.111284 DOI: https://doi.org/10.1016/j.enbuild.2021.111284
PSIMOPOULOS, E., BEE, E., WIDÉN, J., y BALES, C. (2019). Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system. Applied Energy, 249, 355–367. https://doi.org/10.1016/j.apenergy.2019.04.080 DOI: https://doi.org/10.1016/j.apenergy.2019.04.080
RAMADHANI, U. H., JOHARI, F., LINDBERG, O., MUNKHAMMAR, J., y WIDÉN, J. (2024). A city-level assessment of residential PV hosting capacity for low-voltage distribution systems considering rooftop data and uncertainties. Applied Energy, 371, 123715. https://doi.org/10.1016/j.apenergy.2024.123715 DOI: https://doi.org/10.1016/j.apenergy.2024.123715
RINALDI, A., SOINI, M. C., STREICHER, K., PATEL, M. K., y PARRA, D. (2021). Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation. Applied Energy, 282, 116110. https://doi.org/10.1016/j.apenergy.2020.116110 DOI: https://doi.org/10.1016/j.apenergy.2020.116110
SADEGHIBAKHTIAR, E., NAEIMI, A., NADERI, S., PIGNATTA, G., y BEHBAHANINIA, A. (2024). Size optimization of a stand-alone solar-wind-battery hybrid system for net zero energy buildings: A case study. Energy and Buildings, 313, 114204. https://doi.org/10.1016/j.enbuild.2024.114204 DOI: https://doi.org/10.1016/j.enbuild.2024.114204
SALPAKARI, J., y LUND, P. (2016). Optimal and rule-based control strategies for energy flexibility in buildings with PV. Applied Energy, 161, 425–436. https://doi.org/10.1016/j.apenergy.2015.10.036 DOI: https://doi.org/10.1016/j.apenergy.2015.10.036
SARKER, M., HARAM, M., RAMASAMY, G., FARID, F., y MANSOR, S. (2023). Solar Photovoltaic Home Systems in Malaysia: A Comprehensive Review and Analysis. Energies, 16(23), 7718. https://doi.org/10.3390/en16237718 DOI: https://doi.org/10.3390/en16237718
SARTORI, I., NAPOLITANO, A., y VOSS, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. https://doi.org/10.1016/j.enbuild.2012.01.032 DOI: https://doi.org/10.1016/j.enbuild.2012.01.032
SHABBIR, N., KUTT, L., ASTAPOV, V., JAWAD, M., ALLIK, A., y HUSEV, O. (2022). Battery Size Optimization with Customer PV Installations and Domestic Load Profile. IEEE Access, 10, 13012–13025. https://doi.org/10.1109/ACCESS.2022.3147977 DOI: https://doi.org/10.1109/ACCESS.2022.3147977
SOHANI, A., CORNARO, C., SHAHVERDIAN, M. H., MOSER, D., PIERRO, M., OLABI, A. G., KARIMI, N., NIŽETIĆ, S., LI, L. K. B., y DORANEHGARD, M. H. (2023). Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building. Applied Energy, 331, 120391. https://doi.org/10.1016/j.apenergy.2022.120391 DOI: https://doi.org/10.1016/j.apenergy.2022.120391
SOOMAR, A., HAKEEM, A., MESSAOUDI, M., MUSZNICKI, P., IQBAL, A., y CZAPP, S. (2022). Solar Photovoltaic Energy Optimization and Challenges. Frontiers in Energy Research 10, 879985. https://doi.org/10.3389/fenrg.2022.879985 DOI: https://doi.org/10.3389/fenrg.2022.879985
TAWALBEH, M., AL-OTHMAN, A., KAFIAH, F., ABDELSALAM, E., ALMOMANI, F., y ALKASRAWI, M. (2020). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528. https://doi.org/10.1016/j.scitotenv.2020.143528 DOI: https://doi.org/10.1016/j.scitotenv.2020.143528
VAHABI KHAH, M., ZAHEDI, R., ESKANDARPANAH, R., MIRZAEI, A. M., FARAHANI, O. N., MALEK, I., y REZAEI, N. (2023). Optimal sizing of residential photovoltaic and battery system connected to the power grid based on the cost of energy and peak load. Heliyon, 9(3), e14414. https://doi.org/10.1016/j.heliyon.2023.e14414 DOI: https://doi.org/10.1016/j.heliyon.2023.e14414
WU, H., DENG, F., y TAN, H. (2022). Research on parametric design method of solar photovoltaic utilization potential of nearly zero-energy high-rise residential building based on genetic algorithm. Journal of Cleaner Production, 368, 133169. https://doi.org/10.1016/j.jclepro.2022.133169 DOI: https://doi.org/10.1016/j.jclepro.2022.133169
XUE, Y., LINDKVIST, C. M., y TEMELJOTOV-SALAJ, A. (2021). Barriers and potential solutions to the diffusion of solar photovoltaics from the public-private-people partnership perspective – Case study of Norway. Renewable and Sustainable Energy Reviews, 137, 110636. https://doi.org/10.1016/j.rser.2020.110636 DOI: https://doi.org/10.1016/j.rser.2020.110636
ZABOLI, A., KASIMALLA, S. R., PARK, K., HONG, Y., y HONG, J. (2024). A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies. Energies, 17(11), 2534. https://doi.org/10.3390/en17112534 DOI: https://doi.org/10.3390/en17112534
ZUPIC, I., y ČATER, T. (2014). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Amelia Eunice Maldonado-Lozano, Jhonny Gárate-Ríos, Magda Ushiñahua-Ushiñahua, Gladis Maribel Heredia-Baca, Gabriela del Pilar Palomino-Alvarado, Luis Paredes-Aguilar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The content of articles which are published in each edition of Habitat Sustentable, is the exclusive responsibility of the author(s) and does not necessarily represent the thinking or compromise the opinion of University of the Bio-Bio.
The author(s) conserve their copyright and guarantee to the journal, the right of first publication of their work. This will simultaneously be subject to the Creative Commons Recognition License CC BY-SA, which allows others to share-copy, transform or create new materials from this work for non-commercial purposes, as long as they recognize authorship and the first publication in this journal, and its new creations are under a license with the same terms.









Scientific Information Program/Concurso Fondos de Publicación de Revistas Científicas 2018/ Proyecto Mejoramiento de Visibilidad de Revistas UBB (Código:FP180007).




