Applicability of generic passive design strategies in buildings under the influence of Climate Change in Concepción y Santiago, Chile

Authors

  • Carlos Rubio-Bellido Universidad de Sevilla http://orcid.org/0000-0001-6719-8793
  • Jesús Alberto Pulido-Arcas Universidad de la Prefectura de Shiga
  • María Ureta-Gragera Universidad de Sevilla

Keywords:

Climate change, thermal comfort, adaptive comfort, passive design strategies

Abstract

Passive design strategies in architecture and building performance are normally quantified based on weather files that do not generally consider weather forecasts. This paper investigates the generation of future weather data and its influence on hygrothermal comfort, as well as the applicability of generic passive design strategies. To this end, climate scenarios were generated for Concepción and Santiago, two of the most highly populated conurbations in Chile, for the years 2020, 2050 and 2080. Predictions were produced for the most extensive greenhouse gas emissions scenario, GEIA 2 or “medium-high”, according to the Intergovernmental Panel on Climate Change (IPCC). Comfort levels were analysed using an adaptive approach and considering generic design strategies, both of which are included in ASHRAE standards. Upon analysing the weather forecasts with comfort models, results were obtained that provide a better understanding of the degree of adaption of both the users and the architecture to the possible future climate. This research creates generic strategies to optimize the design of buildings in Chile.

Downloads

Download data is not yet available.

References

AHSRAE STANDARDS COMMITTEE. Thermal Environmental Conditions for Human Occupancy: 2013. Atlanta, American Society of Heating, Refrigerating and Air-conditioning, 2013.

AHSRAE TECHNICAL COMMITTEE. ASHRAE Handbook of Fundamentals: 2005. Atlanta, American Society of Heating, Refrigerating and Air-conditioning, 2005.

BELCHER, Stephen, HACKER, Jacob y POWELL, Diana. Constructing design weather data for future climates. Building Services Engineering Research and Technology [En línea]. 2005, nº26, pp. 49-61. [Consultado 25 agosto 2015]. DOI: 10.1191/0143624405bt112oa

BOUDEN, Chiheb y GHRAB, Nadia. An adaptive thermal comfort model for the Tunisian context: A field study results. Energy and Buildings. [En línea]. 2005, nº37, pp. 952–963. [Consultado 25 agosto 2015]. DOI: 10.1016/j.enbuild.2004.12.003

ENERGY DESIGN TOOL UCLA. [en línea]. [Consultado 28 agosto 2015]. Disponible en: http://www.energydesign-tools.aud.ucla.edu/

ERIKSEN, Siri, ALDUNCE Paulina, SEKHAR, Chandra, D’ALMEIDA, Rafael, MOLEFE, John Isaac, NHEMACHEN, Charles, O’BRIEN , Karen, OLORUNFEMI, Felix, PARK, Jacob, SYGNA, Linda y ULSRUD, Kirsten. When not every response to climate change is a good one: Identifying principles for sustainable adaptation. Climate and Development [En línea]. 2011, nº3, pp. 7–20. [Consultado 25 agosto 2015]. DOI: 10.3763/cdev.2010.0060

FANGER, Povl Ole. Thermal Comfort.1ª ed. Copenhangen: Danish Technical Press, 1970.

FERIADI, Henry y WONG, Nyuk Hien. Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings [En línea]. 2004, vol. 36, n°7, pp. 614–626. [Consultado 25 agosto 2015]. DOI: 10.1016/j.enbuild.2004.01.011

GUAN, Lisa. Preparation of future weather data to study the impact of climate change on buildings. Building and Environment [En línea]. 2009, nº44, pp. 793-800. [Consultado 25 agosto 2015]. DOI:10.1016/j.buildenv.2008.05.021

GIVONI, Baruch. Man, Climate and Architecture. 1ª ed. Amsterdam/London/New York: Elsevier Publishing Company Limited, 1969.

HUMPHREYS, Michael y NICOL, Fergus. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings [En línea]. 2002, vol. 34 nº6, pp. 563–572. [Consultado 25 agosto 2015]. DOI: 10.1016/S0378-7788(02)00006-3

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: 2014. Ginebra: IPCC, 2014.

JENTSCH, Mark F., BAHAJ, AbuBakr S. y JAMES, Patrick A. B. Climate change future proofing of buildings - Generation and assessment of building simulation weather file. Energy and Buildings [En línea]. 2008, nº40, pp. 2148–2168. [Consultado 25 agosto 2015]. DOI: 10.1016/j.enbuild.2008.06.005

MET OFFICE. Met office Hadley centre [en línea]. [Consultado 28 agosto 2015]. Disponible en: http://www.metoffice.gov.uk/climate-change/resources/hadley

MYLONA, Anastasia. The use of UKCP09 to produce weather files for building simulation. Building Services Engineering Research and Technology [En línea]. 2010, vol. 33, n°1, pp. 51-62. [Consultado 25 agosto 2015]. DOI: 10.1177/0143624411428951

OFICINA DE CAMBIO CLIMÁTICO. Plan Nacional de Adaptación al Cambio Climático: 2014. Santiago: Ministerio del Medio Ambiente, 2014.

ROBERT, Amélie, KUMMERT, Michaël. Designing net-zero energy buildings for the future climate, not for the past. Building and Environment [En línea]. 2012, nº55, pp. 150-158. [Consultado 25 agosto 2015]. DOI: 10.1016/j.buildenv.2011.12.014

SCHIERMEIER, Quirin. The real holes in climate science. Nature [En línea]. 2010, vol. 463, n°7279, pp. 284–287. [Consultado 25 agosto 2015]. DOI: 10.1038/463284a

UNIVERSITY OF SOUTHAMPTON. Sustainable Energy Research Group [en línea]. [Consultado 28 agosto 2015]. Disponible en: http://www.energy.soton.ac.uk/ccworldweathergen/

U.S. Department of Energy [en línea]. [Consultado 28 agosto 2015]. Disponible en: http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm

Published

2015-12-30

How to Cite

Rubio-Bellido, C., Pulido-Arcas, J. A., & Ureta-Gragera, M. (2015). Applicability of generic passive design strategies in buildings under the influence of Climate Change in Concepción y Santiago, Chile. Sustainable Habitat, 5(2), 33–41. Retrieved from https://revistas.ubiobio.cl/index.php/RHS/article/view/2106

Issue

Section

Artículos

Most read articles by the same author(s)