Adaptive control in existing facilities and its potential in the context of climate change

Authors

DOI:

https://doi.org/10.22320/07190700.2017.07.02.01

Keywords:

adaptive comfort, climate change, energy demand, setpoint temperature

Abstract

Currently, energy consumption is high in most office buildings mainly due to the use of HVAC systems, which achieve thermal comfort without considering the energy implications. The objectives of this research are to reduce energy demand and consumption while maintaining high levels of adaptive thermal comfort, based on the application of adaptive setpoint temperatures calculated according to CEN Standard EN 15251, and to identify the potential of these procedures for the years 2020, 2050 and 2080, in the context of climate change. To that end, a five-stage methodology was carried out, which consisted of: (1) data collection; (2) field work involving monitoring building temperature and conducting thermal comfort surveys; (3) validation of the simulation model, according to temperature, Predicted Mean Vote (PMV), and energy consumption; (4) simulations; and (5) results. The method was implemented in a recently constructed building in Seville (Spain) that complies with current regulations. The results reveal important reductions in energy demand and consumption, with values between 52% and 63%, and between 51% and 61%, respectively, depending on the climate scenario analyzed.

Downloads

Download data is not yet available.

References

ANSI/ASHRAE. ASHRAE Guideline 14-2014: Measurement of Energy, Demand, and Water Savings, 2014.

ASHRAE. Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE Standard 55-2013, 2013.

BELCHER, Stephen; HACKER, Jacob y POWELL, Diana. Constructing design weather data for future climates. Building Services Engineering Research and Technology, 2005, vol. 1, pp. 49–61. doi: 10.1191/0143624405bt112oa.

CEN. ‘EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings- addressing indoor air quality, thermal environment, lighting and acoustics’. Brussels: European Committee for Standardization, 2007.

EUROPEAN COMMISION. A policy framework for climate and energy in the period from 2020 to 2030. Brussels, 2014.

EUROPEAN COMMISSION. 20 20 by 2020 - Europe’s climate change opportunity. Brussels, 2008. Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52008DC0030&from=EN.

FANGER, Povl Ole. Thermal Comfort. New York: McGraw Hill, 1970.

GOBIERNO DE ESPAÑA. Royal Decree 314/2006 approving the Technical Building Code (Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación. Madrid, España: Imprenta Nacional del Boletín Oficial del Estado, 2006.

GOBIERNO DE ESPAÑA. Royal Decree 1027/2007 approving the Spanish Thermal Building Regulations (Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Termicas en los Edificios). Madrid, España: Imprenta Nacional del Boletín Oficial del Estado, 2007.

HOYT, Tyler; ARENS, Edward y ZHANG, Hui. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 2014, nº 88, pp. 89–96. doi: 10.1016/j.buildenv.2014.09.010.

JENTSCH, Mark; JAMES, Patrick; BOURIKAS, Leonidas y BAHAJ, AbuBakr. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 2013, vol. 55, pp. 514–524. doi: 10.1016/j.renene.2012.12.049.

KRAMER, Rick; MAAS, Marco; MARTENS, Marco; VAN SCHIJNDEL, Jos y SCHELLEN, Henk. Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations. Applied Energy, 2015, vol. 158, pp. 446–458. doi: 10.1016/j.apenergy.2015.08.044.

VAN DER LINDEN, Kees; BOERSTRA, Atze; RAUE, Arjen; KURVERS, Stanley y DE DEAR, Richard. Adaptive temperature limits: A new guideline in the Netherlands: A new approach for the assessment of building performance with respect to thermal indoor climate. Energy and Buildings, 2006, 38(1), pp. 8–17. doi: 10.1016/j.enbuild.2005.02.008.

LUCON, Oswaldo; ÜRGE-VORSATZ, Diana; ZAIN AHMED, Azni; AKBARI, Hashem; BERTOLDI, Paolo; CABEZA, Luisa; EYRE, Nicholas; GADGIL, Ashok; HARVEY, Danny; JIANG, Yi; LIPHOTO, Enoch; MIRASGEDIS, Sevastianos; MURAKAMI, Shuzo; PARIKH, Jyoti; PYKE, Christopher y VILARIÑO, Maria Virginia. Buildings. En: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Brussels: European Commision, 2014, pp. 1–66. doi: 10.2753/JES1097-203X330403.

MCCARTNEY, Kathryn y NICOL, Fergus. Developing an adaptive control algorithm for Europe. Energy and Buildings, 2002, vol. 34, pp. 623–635.

RUBIO-BELLIDO, Carlos; PÉREZ-FARGALLO, Alexis y PULIDO-ARCAS, Jesús Alberto. Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy, 2016, vol. 114, pp. 569–585. doi: 10.1016/j.energy.2016.08.021.

RUBIO-BELLIDO, Carlos; PULIDO-ARCAS, Jesús Alberto y URETA-GRAGERA, María. Aplicabilidad de estrategias genéricas de diseño pasivo en edificaciones bajo la influencia del cambio climático en Concepción y Santiago, Chile. Habitat Sustentable, 2015, vol. 5(2), pp. 32–41.

SÁNCHEZ-GARCÍA, Daniel; RUBIO-BELLIDO, Carlos; GUEVARA-GARCÍA, Francisco Javier y CANIVELL, Jacinto. The influence of climate change in extant dwellings through adaptive comfort point of view. En: Proceedings of the 3rd International Congress on Sustainable Construction and Eco-Efficient Solutions. Sevilla: Universidad de Sevilla, 2017, pp. 532–544.

SÁNCHEZ-GARCÍA, Daniel; SÁNCHEZ-GUEVARA SÁNCHEZ, Carmen y RUBIO-BELLIDO, Carlos. El enfoque adaptativo del confort térmico en Sevilla = The adaptive approach to thermal comfort in Seville. Anales de Edificación, 2016, vol. 2(1), p. 38-48. doi: 10.20868/ade.2016.3197.

SÁNCHEZ-GUEVARA SÁNCHEZ, Carmen; MAVROGIANNI, Anna y NEILA GONZÁLEZ, Francisco Javier. On the minimal thermal habitability conditions in low income dwellings in Spain for a new definition of fuel poverty. Building and Environment, 2016, vol. 114, pp. 344–356. doi: 10.1016/j.buildenv.2016.12.029.

SPYROPOULOS, Giorgios y BALARAS, Constantinos. Energy consumption and the potential of energy savings in Hellenic office buildings used as bank branches - A case study’, Energy and Buildings, 2011, vol. 43, nº4, pp. 770–778. doi: 10.1016/j.enbuild.2010.12.015.

TUMINI, Irina y RUBIO-BELLIDO, Carlos. Measuring Climate Change Impact on Urban Microclimate: A Case Study of Concepción. Procedia Engineering, 2016, vol. 161, pp. 2290–2296. doi: 10.1016/j.proeng.2016.08.830.

Published

2017-12-30

How to Cite

Sánchez-García, D., Rubio-Bellido, C., Marrero-Meléndez, M., Guevara-García, F. J., & Canivell, J. (2017). Adaptive control in existing facilities and its potential in the context of climate change. Sustainable Habitat, 7(2), 06–17. https://doi.org/10.22320/07190700.2017.07.02.01

Issue

Section

Artículos