The influence of glazing on heating, cooling and lighting use in office building retrofitting in a peninsular Mediterranean climate (1971-1980)

Authors

DOI:

https://doi.org/10.22320/07190700.2019.09.01.06

Keywords:

Energy consumption in office buildings, glazing efficiency, energy simulation, Mediterranean climate

Abstract

Office buildings in Spain represent 33% of the total energy consumption of building stock. Most were built prior to when the Technical Building Code came into force, and hence are not energy efficient and have highly glazed façades. Doors and windows are normally the first elements to be replaced during building renovations and present an opportunity for improvement. To this end, glazing can be analyzed according to its configuration, along with any internal coatings, i.e. with or without a low emissivity layer, and through the characteristic parameters, including: thermal transmittance, solar heat gain coefficient and visible transmittance. This article analyzes the replacement of monolithic glass panes with double panes without coatings (low emissivity), by orientation. Three Mediterranean climates with different winter and summer weather severity were studied in Spain (Barcelona, Seville and Malaga). In terms of window configuration and internal coatings, for heating, lower energy consumption can be obtained with glass without coatings that has higher thermal transmittance, and for cooling, with low emissivity glass. Alternately, if the characteristic parameters are analyzed, lower heating consumption is achieved with low thermal transmittance, high solar heat gain and low visible transmittance. On the contrary, during the summer high thermal transmittance, low solar heat gain coefficient and high visible transmittance yield the best results for cooling. Therefore, it is the combination of weather from both seasons that dictates the optimal values. In lighting, lower consumption is obtained with higher visible transmittance and solar heat gain coefficients.

Downloads

Download data is not yet available.

Author Biographies

Jorge Ávila-Delgado, Universidad de Sevilla, Sevilla (España)

Grado en Ciencia y Tecnología de Edificación

Estudiante de Doctorado Universidad de Sevilla, Sevilla (España)

María Robador-González, Universidad de Sevilla, Sevilla (España).

Doctor Arquitecto

Departamento de Construcciones Arquitectónicas II. Universidad de Sevilla.

José Barrera-Vera, Universidad de Sevilla, Sevilla (España)

Doctorado en técnicas gráficas y cartográficas

Docente del Departamento de Expresión Gráfica Arquitectónica. Universidad de Sevilla

Madelyn Marrero, Universidad de Sevilla, Sevilla (España)

Doctora en Filosofía

Docente del Departamento de Construcciones Arquitectónicas II. Universidad de Sevilla

References

ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN Y CERTIFICACIÓN. Vidrio para la Edificación. Determinación de las características luminosas y solares acristalamientos. UNE-EN 410, 2011a.

ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN Y CERTIFICACIÓN. Vidrio en la construcción. Determinación del coeficiente de transmisión térmica (valor U). UNE-EN 673, 2011b.

ASOCIACIÓN ESPAÑOLA DE FABRICANTES DE FACHADAS LIGERAS Y VENTANAS. Guía Técnica de Ventanas para la Certificación Energética de Edificios. ASEFAVE: 2014.

BODART, M. y DE HERDE A. Global energy savings in offices buildings by the use of daylight. Energy and Buildings, 2002, vol. 34, pp. 421-429.

CÓDIGO TÉCNICO DE LA EDIFICACIÓN (CTE). Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación, 2006.

CÓDIGO TÉCNICO DE LA EDIFICACIÓN. Documento básico habitabilidad energía 2. Reglamento de Instalaciones Térmicas en los edificios (versión consolidada): septiembre 2013. España: Ministerio de Fomento, 2013.

CÓDIGO TÉCNICO DE LA EDIFICACIÓN. Documento Básico Habitabilidad Energía 1. Limitación de la demanda energética: junio 2017. España: Ministerio de Fomento, 2017.

DIRECCIÓN GENERAL DE ARQUITECTURA, VIVIENDA Y SUELO. Observatorio de Vivienda y Suelo. Boletín Especial Censo 2011 Parque edificatorio: abril 2014. España: Ministerio de Fomento, 2014.

DIRECTIVA DEL PARLAMENTO EUROPEO Y DEL CONSEJO. Directiva 2010/31/CE relativa a la eficiencia energética de los edificios (refundición). Diario Oficial de la Unión Europea, nº L 153. Unión Europea, 2010.

ESTRATEGIA DE AHORRO Y EFICIENCIA ENERGÉTICA EN ESPAÑA 2004-2012 [en línea]. Sector Edificación, 2003. [Consultado 12 abril 2019]. Disponible en: https://previa.uclm.es/profesorado/vtoledano/_private/Eficiencia%20Energ%C3%A9tica%20en%20Espa%C3%B1a.pdf.

FRANZETTI, Christelle; FRAISE, Gilles y ACHARD, Gilbert. Influence of the coupling between daylight and artificial lighting on the thermal loads in office buildings. Energy and Buildings [en línea], 2004, vol. 36, pp. 117-126. DOI: 10.1016/j.enbuild.2003.10.005.

GIMÉNEZ MOLINA, María del Carmen. Alternativas para la mejora de la eficiencia energética de los acristalamientos: los vidrios dinámicos. Tesis doctoral, Universidad Politécnica de Madrid, 2011.

GOIA, Francesco. Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Solar Energy [en línea], 2016, vol. 132, pp. 467-492. DOI: http://dx.doi.org/10.1016/j.solener.2016.03.031.

GRYNNING, Steinar; GUSTAVSEN, Arild; TIME, Berit y JELLE, Bjorn Petter. Windows in the buildings of tomorrow: Energy losers or energy gainers? Energy and Buildings [en línea], 2013, vol. 61, 185-192. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.02.029.

HEE, W.J.; ALGHOUL, M.A.; BAKHTYAR, B.; ELAYEB, O.; SHAMERI, M.A.; ALRUBAIH, M.S. y SOPIAN K. The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews [en línea], 2015, vol. 42, pp. 323-343. DOI: http://dx.doi.org/10.1016/j.rser.2014.09.020031.

HUANG, Yu; NIU, Jian-lei y CHUNG, Tse-ming. Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Applied Energy [en línea], 2014, vol. 134, pp. 215-228. DOI: http://dx.doi.org/10.1016/j.apenergy.2014.07.100.

HUNGER, Tomás. La humanidad ante el temido efecto de las 400 ppmde CO2. Ciencias [en línea], 8 noviembre 2016, p. 19. [Consultado 12 abril 2019]. Disponible en:
http://www.asocem.org.pe/archivo/files/330406028-La-Humanidad-Ante-El-Temido-Hito-de-Las-400-Ppm-de-CO2.pdf

INSTITUTO PARA LA DIVERSIFICACIÓN Y AHORRO DE LA ENERGÍA. Guía Técnica de Eficiencia Energética en Iluminación. Oficinas: marzo 2001. Madrid: IDAE, 2001.

INSTITUTO PARA LA DIVERSIFICACIÓN Y AHORRO DE LA ENERGÍA. Guía Técnica para la Rehabilitación de la Envolvente Térmica de los Edificios. Soluciones de Acristalamiento y Cerramiento Acristalado: septiembre 2008. Madrid: IDAE, 2008.

IHARA, Takeshi; GUSTAVSEN, Arild y JELLE, Bjørn Petter. Effect of facade components on energy efficiency in office buildings. Applied Energy [en línea], 2015, vol. 158 pp. 422-432. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.08.074.

JABER, Samar y AJIB, Salman. Thermal and economic windows design for different climate zones. Energy and Buildings [en línea], 2011, vol. 43 pp. 3208-3215. DOI: 10.1016/j.enbuild.2011.08.019

KIM, Seok-Hyun; KIM, Sun-Sook.; KIM Kwang-Woo y CHO, Young-Hum. A study on the proposes of energy analysis indicator by the window elements of office buildings in Korea. Energy and Buildings [en línea], 2014, vol. 73, pp. 153-165. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.061.

LEE, Chijoo y WON, Jongsung. Analysis of combinations of glazing properties to improve economic efficiency of buildings. Journal of Cleaner Production [en línea], 2017, vol. 166 pp. 181-88. DOI: http://dx.doi.org/10.1016/j.jclepro.2017.08.024429.

LEE, J.W.; JUNG, H.J.; PARK, J.Y.; LEE, J.B. y YOON, Y. Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 2013 [en línea], vol. 50, pp. 522-531. DOI: http://dx.doi.org/10.1016/j.renene.2012.07.029016.

MA, Peizheng; WANG, Lin-Shu y GUO, Nianhua. Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude. Applied Energy [en línea], 2015, vol. 146, pp. 84-91. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.01.103020031.

MÉNDEZ ECHENAGUCIA, Tomás; CAPOZZOLI, Alfonso; CASCONE, Ylenia y SASSONE Mario. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy [en línea], 2015, vol. 54, pp. 577-591. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.04.090.

MINISTERIO DE LA VIVIENDA. Decreto 3565/72 por el que se establecen las normas tecnológicas de la edificación NTE. Boletín Oficial del Estado, nº 13. España, 1972.

ORDÓÑEZ GARCÍA, Arturo. Manual de ayuda DesignBuilder en español. Versión del manual 2014.12.03. Sol-Arq., 2014.

PINO, Alan; BUSTAMANTE, Waldo; ESCOBAR, Rodrigo y ENCINAS PINO, Felipe. Thermal and lighting behavior of office buildings in Santiago of Chile. Energy and Buildings [en línea], 2012, vol. 47 pp. 441-449. DOI: 10.1016/j.enbuild.2011.12.016.

POIRAZIS, Harris; BLOMSTERBERG, Ake y WALL María. Energy simulations for glazed office buildings. Energy and Buildings [en línea], 2008, vol. 40, pp. 1161-1170. DOI: 10.1016/j.enbuild.2007.10.011.

RUBIO-BELLIDO, Carlos; PÉREZ FARGALLO, Alexis; PULIDO ARCAS, Jesús A. Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy [en línea], 2016, vol. 114, pp. 569- 585. DOI: http://dx.doi.org/10.1016/j.energy.2016.08.021.

SERVICIOS ELECTRÓNICOS DE LA DIRECCIÓN GENERAL DEL CATASTRO [en línea]. [Consultado 10 abril 2019]. Disponible en: https://www.sedecatastro.gob.es/.

SHIBUYA, Toshihiko y CROXFORD, Ben. The effect of climate change on office building energy consumption in Japan. Energy and Buildings [en línea], 2016, vol. 117, pp. 149-159. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.02.023.

TIAN, Cheng; CHEN, Tingyao; YANG, Hongxing y CHUNG, Tse-ming. A generalized window energy rating system for typical office buildings. Solar Energy [en línea], 2010, vol. 84, pp. 1232–1243. DOI: 10.1016/j.solener.2010.03.030.

TSIKALOUDAKI, Katerina; LASKOS, K. Konstantinos; THEODOSIOU, Theodoros y BIKAS, Dimitrios. Assessing cooling energy performance of windows for office buildings in the Mediterranean zone. Energy and Buildings [en línea], 2012, vol. 49, pp. 192-199, DOI: 10.1016/j.enbuild.2012.02.004.

Published

2019-06-30

How to Cite

Ávila-Delgado, J., Robador-González, M., Barrera-Vera, J., & Marrero, M. (2019). The influence of glazing on heating, cooling and lighting use in office building retrofitting in a peninsular Mediterranean climate (1971-1980). Sustainable Habitat, 9(1), 68–83. https://doi.org/10.22320/07190700.2019.09.01.06

Issue

Section

Artículos