Geothermal potential cooling for buildings in arid zone

Authors

  • Mario Esteban Cúnsulo Universidad Nacional de San Juan - Instituto de Estudios en Arquitectura Ambiental INEAA -Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0001-7981-6683
  • Alejandra Kurbán Universidad Nacional de San Juan - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0002-8795-1129
  • Santiago Tosetti Universidad Nacional de San Juan - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0001-9255-5422
  • Eduardo Montilla Universidad Nacional de San Juan https://orcid.org/0000-0001-7814-5734

DOI:

https://doi.org/10.22320/07190700.2019.09.02.04

Keywords:

bioclimatic architecture, passive systems, energy savings

Abstract

In this article the geothermal potential is quantitatively explored to be used as a passive system of building cooling in an urban arid environment, taking as a study case the San Juan Metropolitan Area. The climate database for the summer season is used as input. It was obtained at the University Malvinas Islands (CUIM) of the National University of San Juan, place where the Institute of Studies in Environmental Architecture “Arq. Alberto Papparelli”(INEAA), records temperature of the soil at different depths, and environmental meteorological parameters. The results are related with the identification of gradients and optimal depths to be used as geothermal resources for passive cooling system in order to provide hygrothermal comfort in arid urban zones during summer. In average a maximum of 8.7 °C difference between the temperature of the air and the ground to a 3m depth. The length of the underground tubes required results from 64m to a velocity of 3 m/sec, which falls down to 27m for an air speed of 2m/s.

Downloads

Download data is not yet available.

Author Biographies

Mario Esteban Cúnsulo, Universidad Nacional de San Juan - Instituto de Estudios en Arquitectura Ambiental INEAA -Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Igneniero Civil

Docente adjunto e Investigador Facultad de Arquitectura, Urbanismo y Diseño

mcunsulo@unsj.edu.ar

Alejandra Kurbán, Universidad Nacional de San Juan - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Doctora en Arquitectura y Urbanismo

Docente títular Facultad de Arquitectura

akurban@unsj.edu.ar

Santiago Tosetti, Universidad Nacional de San Juan - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Doctor en Ingeniería

Investigador Instituto de Automática (INAUT)

stosetti@gmail.com

Eduardo Montilla, Universidad Nacional de San Juan

Arquitecto

Docente Titular Facultad de Arquitectura Urbanismo y Diseño

alejo_montilla@yahoo.com.ar

References

Ahmed, A., Ip, K., Miller, A. y Gidado, K. (2009). Thermal performance of earth-air heat exchanger for reducing cooling energy demand of office buildings in the United Kingdom. En Eleventh International IBPSA Conference, Glasgow, Scotland, July 27-30, 2009.

Bansal, V., Misra, R., Agrawal, G.D. y Mathur, J. (2010). Performance analysis of earth-pipe-air heat exchanger for
summer cooling. Energy and Buildings, 42 (5), 645-648.

Baver, L., Gardner, W. y Gardner, W. (1991). Física de suelos. Primera ed. México: Grupo Noriega.

Bisoniya, T. (2015). Design of earth–air heat exchanger system. Geothermal Energy, 3(18). DOI 10.1186/s40517-015-0036-2

Cabezas, A. (2013). Eficiencia energética a través de utilización de pozos canadienses con el análisis de datos de un caso real “Casa Pomaret”. Tesina final de Master en Edificación. Universidad Politécnica de Catalunya – UPC, Barcelona.

Cohenca, D., Bordas, M., Schvartzman, D. (2013). Caracterización de las propiedades térmicas del suelo – Campus universitario San Lorenzo –Paraguay. En Acta de la XXXVI Reunión de Trabajo de la Asociación Argentina de Energías Renovables y Medio Ambiente. Vol. 1 (pp. 08.43-08.52). Salta: ASADES.

De Paepe, M. y Janssens, A. (2003). Thermo-hydraulic design of earth-air heat exchangers. Energy and Buildings, 35(4), 389-397.

Flores Larsen, S., Hernández, A., Lesino, G. y Salvo, N. (2001). Measurement and simulation of the thermal behavior
of a massive building with passive solar conditioning. En Proceedings of VII International Building Simulation Congress
(pp. 183-190), Río de Janeiro, Brazil.

Flores Larsen, S. y Lesino, G. (2001). Modelización de intercambiadores tierra-aire para acondicionamiento térmico
de edificios. En Actas del 8º Congreso Latinoamericano de Transferencia de Calor y Materia (LATCYM 2001), México.

Givoni, B. (1984). Curso Extensivo “Acondicionamiento térmico para edificios en verano, mediante emergías naturales”.
Mendoza (5 al 28 de mayo).

Hazim Zaki, H., Al-musaed, A. y Khalil, A. (2005). En Thermal earth inertia such a source of energy for bio-sustainable house. The 2005 World Sustainable Building Conference, Tokyo.

Hollmuller, P. y Lachal, B. (2005). Buried pipe systems with sensible and latent heat. Exchange validation of numerical
simulation against analytical solution and long-term monitoring. Montreal: Escuela Politécnica de Montreal.

Iannelli, L., Bezzo, E., Bermejo, A., Cozza, P., Fiora, J., Niño, J., Prieto, R., Romero P., Gil S. (2013). La tierra como acondicionador natural de ambientes. En Primer Encuentro Latinoamericano de Uso Racional y Eficiente de la Energía (25-27 septiembre 2013), Universidad de Buenos Aires (UBA), Instituto Nacional de Tecnología Industrial (INTI).

Iannelli, L. y Gil, S. (2012). Acondicionamiento térmico de aire usando energía geotérmica-ondas de calor. Lat. Am. J. Phys. Educ., 6(1), 100.

Kurbán, A., Cúnsulo, M., Álvarez, A., Montilla, E. y Ortega, A. (2015). The role of bioclimatic architecture in the reduction of the emission of CO2 in arid environments. Environmental Science, 11(6), 171-178.

Kurbán, A., Cúnsulo, M., Matar, M., Ripoll, V. y Ortega, A. (2017). Social bioclimatic urban prototype in arid area. Energy and economic assessment. International Journal of Applied Science and Technology, 7(4).

Neila, F. y Bedoya, C. (2001). Técnicas arquitectónicas y constructivas de acondicionamiento ambiental. 2ª Edición.
Madrid: Murilla –Lería.

Ortega A., Montilla E. y Cúnsulo M. (2013). Clima urbano árido. Base de datos para estudios del Área Metropolitana de San Juan. AVERMA, 17, 11.19 a 11.26.

Pittaluga, A., Ocaña, E. y Cortez, V. (2019). Estudio de suelos en el área del Complejo Universitario Islas Malvinas (CUIM). Rivadavia - Provincia de San Juan. (Inédito).

Rouag, A., Benchabane, A. y Mehdid, C. (2018). Thermal design of Earth-to-Air Heat Exchanger. Part I. A new transient semianalytical model for determining soil temperature. Journal of Cleaner Production, 182, 538-544.

Tiwari, G., Singh, V., Joshi, P., Shyam, D. A., Prabhakant, G. A. (2014). Design of an Earth Air Heat Exchanger (EAHE) for Climatic Condition of Chennai, India. Open Environmental Sciences, 8, 24-34.

Vidal J. y Vidal O. (2011). Instalaciones de ventilación. En: Sistemas Eficientes de Climatización (pp. 2-8). Barcelona: La Salle - Universitat Ramón Llull.

Xamán, J., Hernández-Pérez, I., Arce, J. Álvarez, G., Ramírez-Dávila, L. y Noh-Pat, F. (2014). Numerical study of earth-to-air heat exchanger: the effect of thermal insulation. Energy and Buildings, 85(Suppl. C), 356-361.

Published

2019-12-31

How to Cite

Cúnsulo, M. E., Kurbán, A., Tosetti, S., & Montilla, E. (2019). Geothermal potential cooling for buildings in arid zone. Sustainable Habitat, 9(2), 42–51. https://doi.org/10.22320/07190700.2019.09.02.04

Issue

Section

Artículos