Compressed Earth Blocks (CEB) stabilized with lime and cement. Evaluation of both their environmental impact and compressive strength
DOI:
https://doi.org/10.22320/07190700.2020.10.02.05Keywords:
earth, stabilization, material strength, environmental impactAbstract
This work presents the evaluation of the environmental impact and compressive strength of Compressed Earth Blocks (CEB) stabilized with hydrated aerial lime and Portland cement. For this, 12 series of blocks stabilized with different proportions of lime and cement were manufactured and the Life Cycle Analysis (LCA) methodology was used. After conducting these assays and simulations, it could be concluded that, using earth and sand typical of the city of Santa Fe (Argentina), stabilized with certain percentages of Portland cement between 5 and 10% in weight, CEB can be produced with sufficient levels of strength for them to be used in load-bearing walls, in this way minimizing the negative environmental impact associated with their manufacturing. It is also concluded that the stabilization with aerial lime does not increase the CEB’s compressive strength and, on the contrary, significantly increases their negative impact on the environment.
Downloads
References
Angulo, D. E. y Carreño, K. (2017). El Bloque de Tierra Comprimido o BTC. Una alternativa de construcción para la arquitectura contemporánea. NODO, 12(23), 31–37. http://revistas.uan.edu.co/index.php/nodo/article/view/655
Aranda Jiménez, Y. G. y Suárez-Domínguez, E. J. (2014). Efecto de la impermeabilidad del Mucílago de Nopal en bloques de tierra comprimidos. Nova Scientia, 6(11), 331-323.
Ben Mansour, M., Ogam, E., Jelidi, A., Cherif, A. S. y Ben Jabrallah, S. (2017). Influence of compaction pressure on the mechanical and acoustic properties of compacted earth blocks: An inverse multi-parameter acoustic problem. Applied Acoustics, 125, 128–135. DOI: https://doi.org/10.1016/j.apacoust.2017.04.017
Bradley, R. A., Gohnert, M. y Bulovic, I. (2018). Construction considerations for low-cost earth brick shells. Journal of Construction in Developing Countries, 23(1), 43–60. Recuperado de http://web.usm.my/jcdc/vol23_1_2018/jcdc2018.23.1.3.pdf
Cabrera, S. y González, A. y Rotondaro, R. (2019). Bloques de tierra comprimida estabilizados con cal. Evaluación de dosificaciones y resistencia a la compresión. En Fundación Eco Urbano, III Encuentro Latinoamericano y Europeo de Edificaciones y Comunidades Sostenibles (EUROelecs 2019), 22 a 25 de mayo de 2019, Santa Fe, Argentina (pp. 141-148). DOI: https://doi.org/10.33414/ajea.3.633.2019
Cabrera, S., González, A. y Rotondaro, R. (2020). Resistencia a compresión en Bloques de Tierra Comprimida. Comparación entre diferentes métodos de ensayo. Informes de la Construcción, 72(560). DOI: https://doi.org/10.3989/ic.70462
Carretero-Ayuso, M. y García-Sanz-Calcedo, J. (2018). Comparison between building roof construction systems based on the LCA. Revista de la Construcción, 18(1), 123–136. DOI: https://doi.org/10.7764/RDLC.17.1.123
Copyright Pré (2019). SimaPro 9. Recuperado de https://simapro.com/
Curadelli, S., López, M., Piastrellini, R., Arena, P. y Civit, B. (2019). Estudio socioambiental de la producción de ladrillos artesanales en Mendoza desde la perspectiva del análisis de ciclo de vida. Mendoza: edUTecNe. Recuperado de http://190.114.221.84/handle/20.500.12272/3719
Elahi, T. E., Shahriar, A. R., Alam, M. K. y Abedin, M. Z. (2020). Effectiveness of saw dust ash and cement for fabrication of compressed stabilized earth blocks. Construction and Building Materials, 259. DOI: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120568
Fernandes, J., Peixoto, M., Mateus, R. y Gervásio, H. (2019). Life cycle analysis of Environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. Journal of Cleaner Production, 241. DOI: https://doi.org/10.1016/j.jclepro.2019.118286
González, A. y Cabrera, S. (2017). Prensa electromecánica para BTC. En Neves, C, Salcedo, Z. y Borges, O. (Eds.), XVII Seminario Iberoamericano de Arquitectura y Construcción con Tierra (SIACOT), (pp. 91–100). La Paz: PROTERRA. Recuperado de https://redproterra.org/wp-content/uploads/2020/06/17-SIACOT-Bolivia-2017.pdf
González López, J., Juárez Alvarado, C., Ayub Francis, B. y Mendoza Rangel, J. (2018). Compaction effect on the compressive strength and durability of stabilized earth blocks. Construction and Building Materials, 163, 179–188. DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.074
Guapi Cepeda, G. M. y Yagual Flores, K. D. (2017). Análisis de la producción de cal de la comuna San Antonio como oferta exportable a los mercados internacionales. Tesis de pregrado. Universidad de Guayaquil. Recuperado de http://repositorio.ug.edu.ec/handle/redug/47728
Guilarducci, A. (2018). Generación de adiciones minerales para el cemento Portland a partir de residuos de centrales termoeléctricas de lecho fluidizado. Tesis doctoral. Universidad Nacional del Litoral. Recuperado de https://bibliotecavirtual.unl.edu.ar:8443/handle/11185/1103
Guzmán, S. e Iñiguez, M. (2016). Election methodology of chemical stabilizers for earth blocks. Estoa, 5(9), 151–159. DOI: https://doi.org/10.18537/est.v005.n009.12
Hegyi, A., Dico, C. y Catalan, G. (2016). Construction sustainability with adobe bricks type elements. Urbanism. Arhitectura. Constructii, 7(2), 147-156. Recuperado de https://pdfs.semanticscholar.org/4296/f73ce17aad2539bda49d366ef7e2d08c93ed.pdf
Herrera Villa, J. (2018). Modelamiento numérico del comportamiento sísmico de viviendas de mampostería con bloques de tierra comprimida. Tesis de magíster. Pontificia Universidad Católica del Perú. Recuperado de http://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/12059
IRAM (2017). IRAM-ISO 14040. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Buenos Aires.
Laborel-Préneron, A., Aubert, Jean-Emmanuel Magniont, C., Maillard, P. y Poirier, C. (2016). Effect of plant aggregates on mechanical properties of earth bricks. Journal of Materials in Civil Engineering, 29(12), 719-734. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.119
Laguna, M. (2011). Ladrillo Ecológico Como Material Sostenible para las Construcción. Trabajo final de Carrera. Universidad Pública de Navarra. Recuperado de http://academica-e.unavarra.es/bitstream/handle/2454/4504/577656.pdf?sequence=1
Maddalena, R., Roberts, J. J. y Hamilton, A. (2018). Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. Journal of Cleaner Production, 186, 933–942. DOI: https://doi.org/https://doi.org/10.1016/j.jclepro.2018.02.138
Malkanthi, S. N., Balthazaar, N. y Perera, A. A. D. A. J. (2020). Lime stabilization for compressed stabilized earth blocks with reduced clay and silt. Case Studies in Construction Materials, 12. DOI: https://doi.org/10.1016/j.cscm.2019.e00326
Neves, C. y Borges Farías, O. (Orgs.) (2011). Técnicas de Construcción con Tierra. Bauru: FEB-UNESP / PROTERRA. Recuperado: https://redproterra.org/wp-content/uploads/2020/05/4a_PP-Tecnicas-de-construccion-con-tierra_2011.pdf
ONNCCE (2015). NMX-C-508 Industria de la Construcción. Bloques de tierra comprimida estabilizados con cal. Especificaciones y métodos de ensayo. México D.F.
Ouedraogo, K. A. J., Aubert, J. E., Tribout, C. y Escadeillas, G. (2020). Is stabilization of earth bricks using low cement or lime contents relevant? Construction and Building Materials, 236. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117578
Qiu, Q. (2020). A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Construction and Building Materials, 247. DOI: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118503
Roux Gutiérrez, R. y Espuna Mujica, J. (2016). El Hidróxido de Calcio y los bloques de tierra comprimida, alternativa sostenible de construcción. Nova Scientia, 5(2), 176-202. DOI: https://doi.org/10.21640/ns.v5i9.163
Sitton, J. D., Zeinali, Y., Heidarian, W. H. y Story, B. A. (2018). Effect of mix design on compressed earth block strength. Construction and Building Materials, 158, 124–131. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.005
Unión Europea (UE). (2007). Norma Euro 5. Bruselas.
Van Damme, H. y Houben, H. (2018). Earth concrete. Stabilization revisited. Cement and Concrete Research, 114, 90–102. DOI: https://doi.org/https://doi.org/10.1016/j.cemconres.2017.02.035
Vázquez Espi, M. (2001). Construcción e impacto sobre el ambiente: el caso de la tierra y otros materiales. Informes de la Construcción, 52(471), 29–43. DOI: https://doi.org/10.3989/ic
Vissac, A., Bourges, A. y Gandreau, D. (2017). Argiles & Biopolyméres. Les stabilisants naturaels pour la construction en terre. Grenoble: CRATerre éditions. Recuperado de https://craterre.hypotheses.org/1370
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Santiago Pedro Cabrera, Yolanda Guadalupe Aranda Jiménez, Edgardo Jonathan Suárez Domínguez, Rodolfo Rotondaro
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The content of articles which are published in each edition of Habitat Sustentable, is the exclusive responsibility of the author(s) and does not necessarily represent the thinking or compromise the opinion of University of the Bio-Bio.
The author(s) conserve their copyright and guarantee to the journal, the right of first publication of their work. This will simultaneously be subject to the Creative Commons Recognition License CC BY-SA, which allows others to share-copy, transform or create new materials from this work for non-commercial purposes, as long as they recognize authorship and the first publication in this journal, and its new creations are under a license with the same terms.