Prefabricated buildings in Chile: energy diagnosis, 40 years after their construction. Case study: KPD buildings, Santiago de Chile.

Authors

  • Karin Pamela Vásquez-Manquián Universidad Tecnológica Metropolitana, Santiago, Chile.
  • Alejandra Verónica Decinti-Weiss Universidad Tecnológica Metropolitana, Santiago, Chile
  • Marco Antonio Díaz-Huenchuan Universidad Tecnológica Metropolitana, Santiago, Chile.

DOI:

https://doi.org/10.22320/07190700.2020.10.02.01

Keywords:

thermal comfort, energy labeling, social housing

Abstract

KPD residential buildings, although simple and discrete, are emblematic of Chile. Their story in this country starts with an earthquake and is intertwined with the antagonistic governments of Salvador Allende and Augusto Pinochet. These buildings have remained outside current thermal regulations, and have become part of an extensive built housing stock that need to be diagnosed in terms of energy, to align them with domestic thermal requirements and, in this way, improve the quality of life of their inhabitants and contribute to what Chile has already committed to in terms of carbon neutrality. This article presents a thermal comfort evaluation case study of a KPD residential building complex in the Metropolitan Region. Concretely, four buildings are analyzed, each with the same materials and distribution, but with different orientations. The evaluation methodology considered a three-fold approach: regulatory, labeling and subjective and involved their inhabitants in the diagnosis, who had constantly and inexplicably been marginalized in previous analyses of their own homes. The results show discrepancies between the residents’ perception and the comfort range used by the current energy rating system in Chile.

Downloads

Download data is not yet available.

Author Biographies

Karin Pamela Vásquez-Manquián, Universidad Tecnológica Metropolitana, Santiago, Chile.

Magíster en Eficiencia Energética y Sustentabilidad mención Edificación.
Académico del Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción y Ordenamiento Territorial.

Alejandra Verónica Decinti-Weiss, Universidad Tecnológica Metropolitana, Santiago, Chile

Magíster en Eficiencia Energética y Sustentabilidad mención Edificación
Académico del Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción y Ordenamiento Territorial

Marco Antonio Díaz-Huenchuan, Universidad Tecnológica Metropolitana, Santiago, Chile.

Magíster en Eficiencia Energética y Sustentabilidad mención Edificación.
Académico del Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción y Ordenamiento Territorial.

References

Altomonte, S., Schiavon, S. y Ken, M. (2019). Indoor environmental quality and occupant satisfaction in green-certified buildings. Building Research & Information, 47, 255–274. DOI: https://doi.org/10.1080/09613218.2018.1383715.

Bienvenido-Huertas, D., Rubio-Bellido, C., Pérez-Fargallo, A. y Pulido-Arcas, J. (2020). Energy saving potential in current and future world built environments based on the adaptive comfort approach. Journal of Cleaner Production, 249. DOI: https://doi.org/10.1016/j.jclepro.2019.119306.

Bravo Heitmann, L. (1996). Vivienda social industrializada: la experiencia chilena (1960- 1995). INVI, 11(28), 14-15. Recuperado de http://revistainvi.uchile.cl/index.php/INVI/article/view/206/181

Brignardello Valdivia, A. (2017). KPD. Historia social y memoria de una fábrica soviética en Chile. Chile: América en Movimiento.

CE Delft (2020). Zero carbon buildings 2050. Background report. Recuperado de https://www.cedelft.eu/en/publications/download/2913

Corporación de Desarrollo tecnológico, In-Data (CDT). (2019). Informe final de usos de la energía de los hogares de Chile. 2018. Recuperado de https://www.dropbox.com/s/zika2we9vqvf9oc/04%20Caracterizaci%C3%B3n_Residencial_2018.pdf?dl=1

Cottone, P., Gaglio, S., Lo Re, G. y Ortolani, M. (2015). User activity recognition for energy saving in smart homes. Pervasive and Mobile Computing 16, 156-170. DOI: doi:http://dx.doi.org/10.1016/j.pmcj.2014.08.006

Daniel, L., Baker, E. y Williamson, T. (2019). Cold housing in mild-climate countries: A study of indoor environmental quality and comfort preferences in homes, Adelaide, Australia. Building and Environment 151, 207–218 DOI: https://doi.org/10.1016/j.buildenv.2019.01.037.

Davis, L., Martínez, S. y Taboada, B. (2020). How effective is energy-efficient housing? Journal of Development Economics,143. DOI: https://doi.org/10.1016/j.jdeveco.2019.102390.

Diaz Lozano, E., Vakalis, D., Touchiea, M., Tzekovac, E. y Siegela, J. (2018). Thermal comfort in multi-unit social housing buildings. Building and Environment, 144, 230–237. DOI: https://doi.org/10.1016/j.buildenv.2018.08.024.

Energy 2 Business SpA (2020). Trayectoria del Sector Energía hacia la Carbono Neutralidad en el contexto del ODS7. Recuperado de http://generadoras.cl/media/page-files/1321/Informe_final_Estudio%20Carbono%20Neutralidad.pdf

Escandón , R., Suárez , R. y Sendra, J. (2017). On the assessment of the energy performance and environmentalbehaviour of social housing stock for the adjustment betweensimulated and measured data: The case of mild winters in theMediterranean climate of southern Europe. Energy and Buildings, 152, 418–433. DOI: https://doi.org/10.1016/j.enbuild.2017.07.063.

Fowlie, M., Greenstone, M. y Wolfram, C. (2015). Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program. NBER - National Bureau of Economic Research, Working Paper 21331. Recuperado de https://www.nber.org/papers/w21331.pdf

Geng, Y., Ji, W., Wa, Z., Lin, B. y Zhu, Y. (2019). A review of operating performance in green buildings: Energy use, indoor environmental quality and occupant satisfaction. Energy & Buildings 183, 500–514 https://doi.org/10.1016/j.enbuild.2018.11.017.

Gobierno de Chile (1992). Ordenanza General de Urbanismo y Construcciones OGUC. Diario Oficial de la República de Chile, Chile. Recuperado de https://www.bcn.cl/leychile/navegar?i=8201&f=2020-06-13

Howden-Chapman, P., Roebbel, N. y Chisholm, E. (2017). Setting Housing Standards to Improve Global Health. International journal of environmental research and public health, 14(12). DOI: https://doi.org/10.3390/ijerph14121542.

Instituto Nacional de Normalización (INN) (2007). NCh853 Acondicionamiento térmico. Envolvente térmica de edificios - Cálculo de resistencias y transmitancias térmicas. Santiago, Chile. Recuperado de http://tipbook.iapp.cl/ak/7ba2f4bd8e4ba3715cad4afabda5061914006c38/embed/view/nch853

Instituto Nacional de Normalización (INN) (2019). NCh1079 Arquitectura y construcción. Zonificación climática y térmica para el diseño de edificaciones. Santiago, Chile.

Liddell, C. y Guiney, C. (2015). Living in a cold and damp home: frameworks for understanding impacts on mental well-being. Public Health, 129(3), 191-199. DOI: 10.1016/j.puhe.2014.11.007.

Ministerio de Energía, Gobierno de Chile (2015). Hoja de Ruta al 2050. Chile. Recuperado de https://www.energia.gob.cl/sites/default/files/hoja_de_ruta_cc_e2050.pdf

Ministerio de Vivienda y Urbanismo (MINVU) (2019). Manual de procedimientos. Calificación energética de viviendas en Chile. Recuperado de https://www.calificacionenergetica.cl/manuales-cev/

Ministerio de Vivienda y Urbanismo (MINVU) e Instituto de la Construcción (2006). Manual de Aplicación Reglamentación Térmica. Chile. Obtenido de https://www.iconstruccion.cl/documentos_sitio/6186_Manual_Parte1.pdf

Ministerio del Medio Ambiente (MMA) (2020). Planes de descontaminación atmosférica. Recuperado de https://ppda.mma.gob.cl/

Nicol, J. y Roaf, S. (2017). Rethinking thermal comfort. Building Research & Information, 45(7), 711-716. DOI:10.1080/09613218.2017.1301698

Ramos, A., Gago, A., Labandeira, X. y Linares, P. (2015). The Role of Information for Energy Efficiency in the Residential Sector. Energy Economics, 52, S17–S29. DOI: http://dx.doi.org/10.1016/j.eneco.2015.08.022.

Serghides, D., Dimitriou, S., Kyprianou, I. y Papanicolas, C. (2017). The Adaptive Comfort Factor in Evaluating the Energy Performance of Office Buildings in the Mediterranean Coastal Cities. Energy Procedia, 134, 683-691. DOI: https://doi.org/10.1016/j.egypro.2017.09.588.

United Nations Climate Change (2019). Annual Report 2019. Recuperado de https://unfccc.int/sites/default/files/resource/unfccc_annual_report_2019.pdf

United Nations Human Settlements Programme, UN-Habitat. (2016). Urbanization and Development. Emerging Futures. World Cities Report 2016. Recuperado de https://unhabitat.org/sites/default/files/download-manager-files/WCR-2016-WEB.pdf

Universidad del Bío-Bío, Centro de Investigación en Tecnologías de la Construcción, CITEC UBB, Dirección de Extensión en Construcción, DECON UC (2014). Manual de Hermeticidad al Aire de las Edificaciones. Concepción, Chile. Recuperado de http://construccionsustentable.uc.cl/images/Documentos/Manual_de_hermeticidad_al_aire_de_edificaciones.pdf

Van den Broek, K. (2019). Household Energy Literacy: A critical review and a conceptual typology. Energy Research & Social Science, 57. DOI: https://doi.org/10.1016/j.erss.2019.101256.

World Health Organization (WHO). (2018). WHO Housing and health guidelines. Recuperado de https://apps.who.int/iris/bitstream/handle/10665/276001/9789241550376-eng.pdf

Published

2020-12-31

How to Cite

Vásquez-Manquián, K. P., Decinti-Weiss, A. V., & Díaz-Huenchuan, M. A. (2020). Prefabricated buildings in Chile: energy diagnosis, 40 years after their construction. Case study: KPD buildings, Santiago de Chile. Sustainable Habitat, 10(2), 08–23. https://doi.org/10.22320/07190700.2020.10.02.01

Issue

Section

Artículos