Energy efficiency improvements in heating. Potential for intervention in an existing school building in the Metropolitan Area of San Juan, Argentina
DOI:
https://doi.org/10.22320/07190700.2021.11.01.02Keywords:
schools, energy rehabilitation, energy efficiency, simulationAbstract
Climate change, the constant growth of energy consumption, and the high levels of emissions recorded by the energy sector, require the implementation of concrete solutions. Building rehabilitation offers a significant opportunity to contribute in this regard. The purpose of this work is to analyze the potential for intervention in a school building from the “Programa Nacional 700 Escuela” (National 700 Schools Program). The improvements in energy efficiency are evaluated through a dynamic simulation and indicators are calculated regarding the annual energy consumption for heating. The values for the reference building are 74.5 kWh/m2 year and 158 kWh/student. With the rehabilitation proposals, energy savings could be achieved of between 39.7% and 60%. The R-Mean alternative appears as the most convenient one as it achieves energy benefits of 47%, with lower investment costs. The energy efficiency indicators for said set of improvements are 39.2 kWh/m2 year and 83.1 kWh/student. The results achieved can serve as reference for the rehabilitation of 71 school buildings built in the province of San Juan between 2004 and 2015, which belong to a construction typology with a similarity of materials of their envelope and functional configuration.
Downloads
References
ANDERSEN, M., DISCOLI, C.A., VIEGAS, G.M. Y MARTINI, I. (2017). Monitoreo energético y estrategias de retrofit para viviendas sociales en clima frío. Hábitat Sustentable, 7(2), 50-63. DOI: https://doi.org/10.22320/07190700.2017.07.02.05
ANSI/ASHRAE (2019). Standard 62.1-2019. Ventilation for Acceptable Indoor Air Quality. ASHRAE and the American National Standards Institute.
ASHRAE (2020). Reopening of schools and universities. Recuperado de https://www.ashrae.org/technical-resources/reopening-of-schools-and-universities
ATTIA, S., SHADMANFAR N. Y RICCI, F. (2020). Developing two benchmark models for nearly zero energy schools. Applied Energy 263, art. 114614. DOI: 10.1016/j.apenergy.2020.114614
AUTODESK (2011). Ecotect Analysis. Sustainable Building Design Software. Recuperado de www.autodesk.com/ecotect-analysis.
BARBOSA, F.C., DE FREITAS, V.P. Y ALMEIDA, M. (2020). School building experimental characterization in Mediterranean climate regarding comfort, indoor air quality and energy consumption. Energy & Buildings, 212. DOI: 10.1016/j.enbuild.2020.109782
BOUTET, M.L., HERNÁNDEZ, A. Y JACOBO, G. (2020). Methodology of quantitative analysis and diagnosis of higro-thermal and lighting monitoring for school buildings in a hot-humid mid-latitude climate. Renewable Energy, 145, 2463-2476. DOI: 10.1016/j.renene.2019.08.009
CAPOREALE P.E, MERCADER MOYANO, M. P. Y CZAJKOWSKI, J. D. (2017). Multi-objective optimisation model: A housing block retrofit in Seville. Energy & Buildings, 153, 476–484. 10.1016/j.enbuild.2017.08.023
ENRE (2020). Ente Nacional Regulador de la Electricidad. Ministerio de Desarrollo Productivo. Recuperado de https://www.argentina.gob.ar/enre/uso-eficiente-y-seguro/consumo-basico-electrodomesticos.
ESTEVES, A. (2017). Arquitectura bioclimática y sustentable: Teoría y práctica de la conservación de la energía. Sistemas solares pasivos y enfriamiento natural de edificios. Mendoza: FAUD, UM; INHAE, CCT-CONICET.
ESTEVES, A., ESTEVES, M.J., MERCADO, M.V., BAREA, G. Y GELARDI, G. (2018). Building Shape that Promotes Sustainable Architecture. Evaluation of the Indicative Factors and Its Relation with the Construction Costs. Architecture Research, 8(4), 111-122. DOI:10.5923/j.arch.20180804.01
GERALDI, M. S. Y GHISI, E. (2020). Mapping the energy usage in Brazilian public schools. Energy & Buildings, 224, 1-17. DOI=10.1016/J.ENBUILD.2020.110209
GODOY-MUÑOZ, A. (2015). Validación y calibración de la simulación energética de edificios La importancia del análisis de sensibilidad e incertidumbre. Tesis de Doctorado en Sostenibilidad, Universidad Politécnica de Catalunya.
HARISH, V. S. K. V. Y KUMAR, A. (2016). A Review on Modeling and Simulation of Building Energy Systems. Renewable and Sustainable Energy Reviews, 56, 1272–1292. DOI: 10.1016/j.rser.2015.12.040
IEA (2018). Informe Global. Hacia un sector de edificios y de la construcción eficiente, resiliente y con cero emisiones. Global Alliance for Buildings and Construction (GlobalABC). Coordinado por el Programa del Medio Ambiente de las Naciones Unidas. Recuperado de www.iea.org.
IRAM (2002). 11605. Acondicionamiento térmico de edificios. Condiciones de habitabilidad en Edificios. Revisión 2002. Instituto Argentino de Normalización.
IRAM (2002). 11601. Aislamiento térmico de edificios. Métodos de cálculo. Instituto Argentino de Normalización.
IRAM (2012). 11603. Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina. Instituto Argentino de Normalización.
IRAM (2017). 11900. Prestaciones energéticas en viviendas. Método de cálculo. 2° Edición. Instituto Argentino de Normalización.
KHAN, H.S., ASIF, M. Y MOHAMMED, M.A. (2017). Case Study of a Nearly Zero Energy Building in Italian Climatic Conditions. Infrastructures, 2(4), 19. DOI: 10.3390/infrastructures2040019
KUCHEN, E. Y KOZAK, D. (2020) Transición energética argentina. El nuevo estándar de eficiencia energética en la evaluación de la vivienda social. Caso de estudio: Vivienda de Barrio Papa Francisco. Hábitat Sustentable, 10(1), 44 -55. DOI: https://doi.org/10.22320/07190700.2020.10.01.04 HS
MINISTERIO DE EDUCACIÓN (1998). Criterios y Normativa Básica de Arquitectura Escolar. Dirección de Infraestructura. Gobierno de la Nación. Argentina.
PONTORIERO, D. (2017). Banco de datos meteorológicos, 2006 a 2015. Instituto de Energía Eléctrica, Facultad de Ingeniería, Universidad Nacional de San Juan.
RÉ, M.G. (2017). Arquitectura escolar. Análisis del Programa Nacional 700 Escuelas en la Provincia de San Juan. Actas del XXI Congreso ARQUISUR. Eje 1. Trabajo Nº30. En: https://www.researchgate.net/publication/320300087_ARQUITECTURA_ESCOLAR_ANALISIS_DEL_PROGRAMA_NACIONAL_700_ESCUELAS_EN_LA_PROVINCIA_DE_SAN_JUAN
RÉ, M.G., BLASCO LUCAS, I. Y FILIPPÍN, C. (2016). Evaluación higrotérmica y energética de un edificio escolar perteneciente al Programa Nacional 700 Escuelas, en el Área Metropolitana de San Juan, Argentina. Hábitat Sustentable, 6(2), 40-51.
ROCKY MOUNTAIN INSTITUTE [RMI] (2020). Recuperado de https://rmi.org/
SAN JUAN, G. (2014). Aprendizaje en las escuelas del siglo XXI. Nota 5. Auditoría ambiental y condiciones de confort en establecimientos escolares. Banco Interamericano de Desarrollo.
SEKKI, T., ANDELIN, M., AIRAKSINEN, M. Y SAARI, A. (2016). Consideration of energy consumption, energy costs, and space occupancy in Finnish daycare centres and school buildings. Energy & Buildings 129, 199–206. DOI: 10.1016/j.enbuild.2016.08.015
SELECTRA (2020). Factor de conversión del gas natural, de m3 a kWh. Recuperado de https://preciogas.com/faq/factor-conversion-gas-natural-kwh.
TRISNAWAN, D. (2018). Ecotect design simulation on existing building to enhance its energy efficiency. IOP Conference Series: Earth and Environmental Science, 105. DOI:10.1088/1755-1315/105/1/012117
VELOSO, A.C.O. Y SOUZA, R.V.G. (2019). Peso do sistema de arcondicionado no consumo de energía eléctrica em edificacao de escritorios: estudo de caso em Belo Horizonte – Brasil. International Building Performance Simulation Association. IBPSA.
WANG, S., YAN, C. Y XIAO, F. (2012). Quantitative energy performance assessment methods for existing buildings. Energy & Buildings, 55, 873–888.
WIKIPEDIA (2020). Mapa de Argentina con localización de la provincia de San Juan. Recuperado de https://es.wikipedia.org/wiki/Provincia_de_San_Juan_(Argentina).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 María Guillermina Ré, María Pía Mazzocco, Celina Filippín
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The content of articles which are published in each edition of Habitat Sustentable, is the exclusive responsibility of the author(s) and does not necessarily represent the thinking or compromise the opinion of University of the Bio-Bio.
The author(s) conserve their copyright and guarantee to the journal, the right of first publication of their work. This will simultaneously be subject to the Creative Commons Recognition License CC BY-SA, which allows others to share-copy, transform or create new materials from this work for non-commercial purposes, as long as they recognize authorship and the first publication in this journal, and its new creations are under a license with the same terms.