Multi-objective optimization of energy efficiency and thermal comfort in public office buildings. Critical summer period in the city of San Juan -Argentina

Authors

DOI:

https://doi.org/10.22320/07190700.2022.12.01.07

Keywords:

building optimization, energy savings, indoor comfort

Abstract

Buildings represent 40% of the world's energy demand and CO2 emissions. In Argentina, buildings are responsible for 40% of the total annual energy consumption. The problem lies in an imbalance between the need to provide a high quality of life and comfort in office spaces, and the high energy cost required to meet that goal. Both a high comfort level and energy savings represent two objectives to be achieved. In this sense, this paper proposes a new methodology that combines onsite measurement with mathematical simulation tools. Innovative techniques and models are incorporated to make the tool, applying thermal-energy multi-objective optimization, which operates dynamically during working hours. The results show significant savings in energy consumption regarding cooling office spaces in the summer, from 57.5% to 83.3%, together with an increase in the thermal comfort quality, with improvements between 4.7% and 29.4%.

Downloads

Download data is not yet available.

Author Biographies

Bruno Damián Arballo, Universidad Nacional de San Juan., San Juan, Argentina

PhD in Architecture, Professor and Postdoctoral Fellow CONICET, Regional Institute of Planning and Habitat, Faculty of Architecture, Urbanism and Design.

Ernesto Kuchen, Universidad Nacional de San Juan, San Juan, Argentina

PhD in Architecture, CONICET Research Professor, Regional Institute of Planning and Habitat (IRPHa), Faculty of Architecture, Urbanism and Design (FAUD).

Daniel Chuk, Universidad Nacional de San Juan, San Juan, Argentina

PhD in Engineering, Research Professor, Instituto de Investigaciones Mineras.

References

ABDOU, N., MGHOUCHI, Y. E., HAMDAOUI, S., ASRI, N. E. y MOUQALLID, M. (2021). Multi-objective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Building and Environment, 204. DOI: doi.org/10.1016/j.buildenv.2021.108141

ARBALLO, B. D. (2020). Eficiencia Energética y Confort Térmico adaptativo-variable en espacios de oficina mediante Optimización Multiobjetivo. Tesis doctoral. Facultad de Arquitectura, Urbanismo y Diseño. Universidad Nacional de San Juan.

ASHRAE Standard 55 (2004). Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

ATTHAJARIYAKUL, S. y LEEPHAKPREEDA, T. (2005). Neural computing thermal comfort index for HVAC systems. Energy conversion and management, 46(15-16), 2553-2565. DOI: doi.org/10.1016/j.enconman.2004.12.007

BLIUC, I., ROTBERG, R. y DUMITRESCU, L. (2007). Assessing thermal comfort of dwellings in summer using EnergyPlus. En Proc. of the CLIMA 2007 World Congress “Well Being Indoors”.

BOERSTRA, A. C., VAN HOOF, J. y VAN WEELE, A. M. (2015). A new hybrid thermal comfort guideline for the Netherlands: background and development. Architectural Science Review, 58(1), 24-34. DOI: doi.org/10.1080/00038628.2014.971702

BRE, F. y FACHINOTTI, V. D. (2017). A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy and Buildings, 154, 283-294. DOI: doi.org/10.1016/j.enbuild.2017.08.002

BRE, F., ROMAN, N. y FACHINOTTI, V. D. (2020). An efficient metamodel-based method to carry out multi-objective building performance optimizations. Energy and buildings, 206. DOI: doi.org/10.1016/j.enbuild.2019.109576

CHAMBERS, L. D. (2000). The practical handbook of genetic algorithms: applications. New York: Chapman and Hall/CRC. DOI: doi.org/10.1201/9781420035568

CHANDEL, S. S., SHARMA, V. y MARWAH, B. M. (2016). Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renewable and Sustainable Energy Reviews, 65, 459-477. DOI: doi.org/10.1016/j.rser.2016.07.038

COELLO, C. A. C., VAN VELDHUIZEN, D. A., y LAMONT, G. B. (2002). Evolutionary algorithms for solving multi-objective problems (Vol. 242). New York: Kluwer Academic.

EnBop (2008). Energie Betriebsoptimierung. Recuperado de http://www.enob.info.

EPRE (2017). Datos de consumo de energía proporcionados por el Ente Provincial Regulador de Energía. San Juan, Argentina.

ISO 7730 (2005). Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISSO. Rotterdam, Holanda.

ISSO 74 (2004). Thermische Behaaglijkeid. Publication 74, ISSO. Rotterdam, Holanda.

KUCHEN, E. (2008). Spot-Monitoring zum thermischen Komfort in Bürogebäuden. Tesis de Doctorado. Tönning, Deutschland: Der Andere Verlag.

KUCHEN, E., ALONSO-FRANK, A., ALAMINO-NARANJO, Y., ARBALLO, B., GALDEANO, M. y ACCOLTI, E. (2016). Eficiencia Energética en Edificios Públicos. En VIII Congreso Regional de Tecnología de la Arquitectura–CRETA (19 al 21 de octubre). San Juan, Argentina.

LI, Q., ZHANG, L., ZHANG, L. y WU, X. (2021). Optimizing energy efficiency and thermal comfort in building green retrofit. Energy, 237. DOI: doi.org/10.1016/j.energy.2021.121509

LU, L., CAI, W., XIE, L., LI, S. y SOH, Y. C. (2005). HVAC system optimization—in-building section. Energy and Buildings, 37(1), 11-22. DOI: doi.org/10.1016/j.enbuild.2003.12.007

NGUYEN, A. T., REITER, S. y RIGO, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, (113), 1043-1058. DOI: doi.org/10.1016/j.apenergy.2013.08.061

Norma IRAM 11603 (2012). Clasificación bioambiental de la República Argentina. Buenos Aires: Instituto Argentino de Normalización y Certificación.

RUPP, R. F., KIM, J., DE DEAR, R. y GHISI, E. (2018). Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings. Building and Environment, 135, 1-9. DOI: doi.org/10.1016/j.buildenv.2018.02.049

RUPP, R. F., VÁSQUEZ, N. G. y LAMBERTS, R. (2015). A review of human thermal comfort in the built environment. Energy and Buildings, 105, 178-205. DOI: doi.org/10.1016/j.enbuild.2015.07.047

SÁNCHEZ-GARCÍA, D., RUBIO-BELLIDO, C., MARRERO-MELÉNDEZ, M., GUEVARA-GARCÍA, F. y CANIVELL, J. (2017). El control adaptativo en instalaciones existentes y su potencial en el contexto del cambio climático. Revista Hábitat Sustentable, 7(2), 06-17. DOI: doi.org/10.22320/07190700.2017.07.02.01

SCHLUETER, M., WAHIB, M. y MUNETOMO, M. (2021). New State-of-the-Art Results on ESA’s Messenger Space Mission Benchmark. In Advances in Parallel & Distributed Processing, and Applications (pp. 669-681). Springer, Cham.

STANISLAV, H. Z. (2003). Systems and Control. Nueva York: Oxford University Press.

TORANZO, E., KUCHEN, E. y ALONSO, A. (2012). Potenciales de eficiencia y confort para un mejor funcionamiento del edificio central de la universidad nacional de San Juan. Avances en Energías Renovables y Medio Ambiente-AVERMA, 16, 157-164.

VAN HOOF, J., MAZEJ, M. y HENSEN, J. L. M. (2010). Thermal Comfort: Research and Practice. Frontiers in Bioscience, 15(2), 765–788.

YUAN, Y., YUAN, J., DU, H. y LI, L. (2012). An improved multi–objective ant colony algorithm for building life cycle energy consumption optimisation. International Journal of Computer Applications in Technology, 43(1), 60-66.

Published

2022-06-30

How to Cite

Arballo, B. D., Kuchen, E. ., & Chuk, D. (2022). Multi-objective optimization of energy efficiency and thermal comfort in public office buildings. Critical summer period in the city of San Juan -Argentina. Sustainable Habitat, 12(1), 102–113. https://doi.org/10.22320/07190700.2022.12.01.07

Issue

Section

Artículos